cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A287648 Maximum number of diagonal transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 6, 27, 120, 333
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

From Eduard I. Vatutin, Oct 04 2020: (Start)
A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element.
A diagonal transversal is a transversal that includes exactly one element from the main diagonal and exactly one from the antidiagonal. For squares of odd orders, these elements can coincide at the intersection of the diagonals. (End)
A007016 is an upper bound for the number of diagonal transversals in a Latin square: A287647(n) <= a(n) <= A007016(n). - Eduard I. Vatutin, Jan 02 2020
a(11) >= 4828, a(12) >= 24901, a(13) >= 131106, a(14) >= 364596, a(15) >= 389318. - Natalia Makarova, Tomáš Brada, Harry White, Oct 04 2020
a(16) >= 32172800, a(18) >= 280308432. - Natalia Makarova, Tomáš Brada, Dec 25 2020
a(12) >= 28496. - Natalia Makarova, Harry White, Jan 23 2021
a(14) >= 380718, a(20) >= 90010806304, a(21) >= 51162162017, a(22) >= 3227747329246. The number of D-transversals for orders 20 - 22 was calculated by a volunteer. - Natalia Makarova, Tomáš Brada, Harry White, Mar 17 2021
All cyclic diagonal Latin squares (see A338562) are diagonal Latin squares, so A342997((n-1)/2) <= a(n). - Eduard I. Vatutin, Apr 26 2021
a(14) >= 383578, a(15) >= 398974. - Natalia Makarova, Tomáš Brada, Jan 13 2022
a(10) >= 890, a(12) >= 30192, a(14) >= 490218, a(15) >= 4620434, a(17) >= 204995269, a(18) >= 281593874, a(19) >= 11254190082. - Eduard I. Vatutin, Jul 22 2020, updated Mar 01 2025
For most orders n, at least one diagonal Latin square with the maximal number of diagonal transversals has an orthogonal mate and a(n) = A360220(n). Known exceptions: n=6 and n=10. - Eduard I. Vatutin, Feb 17 2023

Examples

			For example, the diagonal Latin square
  0 1 2 3
  3 2 1 0
  1 0 3 2
  2 3 0 1
has 4 diagonal transversals:
  0 . . .    . 1 . .    . . 2 .    . . . 3
  . . 1 .    . . . 0    3 . . .    . 2 . .
  . . . 2    . . 3 .    . 0 . .    1 . . .
  . 3 . .    2 . . .    . . . 1    . . 0 .
In addition there are 4 other transversals that are not diagonal transversals and are therefore not included here.
From _Natalia Makarova_, Oct 04 2020: (Start)
The following DLS of order 14 has 364596 diagonal transversals:
   0  7  6 11  9  3  4  5  2 12 13  8 10  1
   6  1 11  5 10 12  2  3  9  7  4 13  0  8
   5 11  2 12  8  1  7 10  0  6  9  3 13  4
  13  6  5  3  1 10  9 12  7  0  2  4  8 11
  12  3 10  1  4 13  8  6 11  5  0  7  2  9
  10 12  1  8  2  5 11 13  4  3  6  0  9  7
   9  2  7  0  5 11  6  8 13  4  1 10  3 12
   4 13  3  9  6  0 10  7  1  8 12  2 11  5
   2  4  9 10 11  6  1  0  8 13  7 12  5  3
   1 10  8 13 12  2  5  4  3  9 11  6  7  0
   3  5 12  7 13  8  0  1  6 11 10  9  4  2
   8  0 13  4  7  9  3  2 12 10  5 11  1  6
   7  9  0  6  3  4 13 11  5  2  8  1 12 10
  11  8  4  2  0  7 12  9 10  1  3  5  6 13
(End)
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, and W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics. 1992. Vol. 139. pp. 43-49.

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Dec 08 2020

A342998 Minimum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4523, 128818, 0, 204330233, 11232045257
Offset: 0

Views

Author

Eduard I. Vatutin, Apr 02 2021

Keywords

Comments

A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
Cyclic diagonal Latin squares do not exist for even orders.
a(n) <= A342997(n).
All cyclic diagonal Latin squares are diagonal Latin squares, so A287647(n) <= a((n-1)/2).

Examples

			For n=2 one of best cyclic diagonal Latin squares of order 5
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
has a(2)=5 diagonal transversals:
  0 . . . .   . 1 . . .   . . 2 . .   . . . 3 .   . . . . 4
  . . 4 . .   . . . 0 .   . . . . 1   2 . . . .   . 3 . . .
  . . . . 3   4 . . . .   . 0 . . .   . . 1 . .   . . . 2 .
  . 2 . . .   . . 3 . .   . . . 4 .   . . . . 0   1 . . . .
  . . . 1 .   . . . . 2   3 . . . .   . 4 . . .   . . 0 . .
		

Crossrefs

A348212 Number of transversals in a cyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 15, 133, 0, 37851, 1030367, 0, 1606008513, 87656896891, 0, 452794797220965, 41609568918940625
Offset: 1

Views

Author

Eduard I. Vatutin, Oct 07 2021

Keywords

Comments

All cyclic diagonal Latin squares of order n have same number of transversals. A similar statement for diagonal transversals is not true (see A342998 and A342997).
All broken diagonals and antidiagonals of cyclic Latin squares are transversals, so a(n) >= 2*n for all n > 1 for which cyclic diagonal Latin squares exist. - Eduard I. Vatutin, Mar 22 2022
All cyclic diagonal Latin squares are diagonal Latin squares, so A287645(2n+1) <= a(n) <= A287644(2n+1) for all orders in which cyclic diagonal Latin squares exist. - Eduard I. Vatutin, Mar 23 2022

Examples

			A cyclic diagonal Latin square of order 5
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
has a(3)=15 transversals:
  0 . . . .   0 . . . .   . 1 . . .         . . . . 4
  . 3 . . .   . . . . 1   2 . . . .         . 3 . . .
  . . 1 . .   . . . 2 .   . . . . 3         . . . 2 .
  . . . 4 .   . . 3 . .   . . . 4 .         1 . . . .
  . . . . 2   . 4 . . .   . . 0 . .   ...   . . 0 . .
		

Crossrefs

Formula

a(n) = A006717(n) * A011655(n+1).

A366332 Minimum number of diagonal transversals in a semicyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4523, 127339, 0, 204330233, 11232045257, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Oct 07 2023

Keywords

Comments

A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Similarly, a vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i).

Examples

			Example of horizontally semicyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
		

Crossrefs

Showing 1-4 of 4 results.