A007016
Number of permutations of length n with 1 fixed and 1 reflected point.
Original entry on oeis.org
0, 1, 0, 0, 8, 20, 96, 656, 5568, 48912, 494080, 5383552, 65097600, 840566080, 11833898496, 176621049600, 2838024476672, 48060623405312, 868000333234176, 16441638519762944, 329723762151352320, 6907027877807330304
Offset: 0
- Simpson, Todd; Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jean-François Alcover, Table of n, a(n) for n = 0..100
- F. Rakotondrajao, Magic squares, rook polynomials and permutations, Séminaire Lotharingien de Combinatoire, vol. 54A, article B54Ac, 2006.
- T. Simpson, Letter to N. J. A. Sloane, Mar. 1992
- T. Simpson, Permutations with unique fixed and reflected points, Preprint. (Annotated scanned copy)
- E. Vatutin, Upper bound for the number of diagonal transversals in a Latin square (in Russian).
-
x[n_] := x[n] = Integrate[If[EvenQ[n], (x^2 - 4*x + 2)^(n/2), (x - 1)*(x^2 - 4*x + 2)^((n - 1)/2)]/E^x, {x, 0, Infinity}];
a[n_ /; EvenQ[n]] := With[{m = n/2}, m*(x[2*m] - (2*m - 3)*x[2*m - 1])];
a[n_ /; OddQ[n]] := With[{m = (n - 1)/2}, (2*m + 1)*x[2*m] + 3*m*x[2*m - 1] - 2*m*(m - 1)*x[2*m - 2]];
Table[a[n], {n, 0, 21}] // Quiet (* Jean-François Alcover, Jun 29 2018 *)
-
a(n) = {my(v = vector(n)); \\ v is A003471
for(n=4, length(v), v[n] = (n-1)*v[n-1] + 2*if(n%2==1, (n-1)*v[n-2], (n-2) * if(n==4,1,v[n-4])));
if(n<4, [1,0,0][n], if(n%2==0, n*(v[n] - (n-3)*v[n-1]), 2*n*v[n-1] + 3*(n-1)*v[n-2] - (n-1)*(n-3)*v[n-3])/2)} \\ Andrew Howroyd, Sep 12 2017
A287648
Maximum number of diagonal transversals in a diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 4, 5, 6, 27, 120, 333
Offset: 1
For example, the diagonal Latin square
0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1
has 4 diagonal transversals:
0 . . . . 1 . . . . 2 . . . . 3
. . 1 . . . . 0 3 . . . . 2 . .
. . . 2 . . 3 . . 0 . . 1 . . .
. 3 . . 2 . . . . . . 1 . . 0 .
In addition there are 4 other transversals that are not diagonal transversals and are therefore not included here.
From _Natalia Makarova_, Oct 04 2020: (Start)
The following DLS of order 14 has 364596 diagonal transversals:
0 7 6 11 9 3 4 5 2 12 13 8 10 1
6 1 11 5 10 12 2 3 9 7 4 13 0 8
5 11 2 12 8 1 7 10 0 6 9 3 13 4
13 6 5 3 1 10 9 12 7 0 2 4 8 11
12 3 10 1 4 13 8 6 11 5 0 7 2 9
10 12 1 8 2 5 11 13 4 3 6 0 9 7
9 2 7 0 5 11 6 8 13 4 1 10 3 12
4 13 3 9 6 0 10 7 1 8 12 2 11 5
2 4 9 10 11 6 1 0 8 13 7 12 5 3
1 10 8 13 12 2 5 4 3 9 11 6 7 0
3 5 12 7 13 8 0 1 6 11 10 9 4 2
8 0 13 4 7 9 3 2 12 10 5 11 1 6
7 9 0 6 3 4 13 11 5 2 8 1 12 10
11 8 4 2 0 7 12 9 10 1 3 5 6 13
(End)
- J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, and W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics. 1992. Vol. 139. pp. 43-49.
- Tomáš Brada, Top 10 CF-ODLK with most orthogonal mates
- Natalia Makarova, Most perfect diagonal Latin square of order 9 with 333 diagonal transversals
- Natalia Makarova, ODLS of order n>10
- Natalia Makarova, DLS with maximum of D-transversals
- Natalia Makarova, DLS of orders n = 11 - 22 with known maximum of D-transversals
- Natalia Makarova, Spectrum by D-transversals for the 14th order DLS
- Natalia Makarova, Spectrum by D-transversals for the 15th order DLS
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- Eduard I. Vatutin, Enumerating the Main Classes of Cyclic and Pandiagonal Latin Squares, Recognition - 2021, pp. 77-79. (in Russian)
- Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, Maxim Manzuk, Alexander Albertian, Ilya Kurochkin, Alexander Kripachev, and Alexey Pykhtin, Diagonalization and Canonization of Latin Squares, Supercomputing, Russian Supercomputing Days (RuSCDays 2023) Rev. Selected Papers Part II, LCNS Vol. 14389, Springer, Cham, 48-61.
- E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, Estimating of combinatorial characteristics for diagonal Latin squares, Recognition — 2017 (2017), pp. 98-100 (in Russian).
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleg S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, and Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order, CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Using Volunteer Computing to Study Some Features of Diagonal Latin Squares, Open Engineering. Vol. 7. Iss. 1. 2017. pp. 453-460. DOI: 10.1515/eng-2017-0052.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, and V. S. Titov, Estimating the Number of Transversals for Diagonal Latin Squares of Small Order, Telecommunications. 2018. No. 1. pp. 12-21 (in Russian).
- E. I. Vatutin, About the upper bound of number of diagonal transversals for diagonal Latin squares of order 10 (in Russian).
- E. I. Vatutin, About the upper bound of number of diagonal transversals for diagonal Latin squares of order 9 (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
- Eduard I. Vatutin, Best known examples.
- Index entries for sequences related to Latin squares and rectangles.
A287644
Maximum number of transversals in a diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 8, 15, 32, 133, 384, 2241
Offset: 1
- J. W. Brown et al., Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, volume 139 (1992), pp. 43-49.
- E. T. Parker, Computer investigations of orthogonal Latin squares of order 10, Proc. Sympos. Appl. Math., volume 15 (1963), pp. 73-81.
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru.
- E. I. Vatutin, About the minimal and maximal number of transversals in a diagonal Latin squares of order 9 (in Russian).
- Eduard I. Vatutin, Enumerating the Main Classes of Cyclic and Pandiagonal Latin Squares, Recognition — 2021, pp. 77-79. (in Russian)
- Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer, Cham (2020), 127-146.
- Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, Maxim Manzuk, Alexander Albertian, Ilya Kurochkin, Alexander Kripachev, and Alexey Pykhtin, Diagonalization and Canonization of Latin Squares, Supercomputing, Russian Supercomputing Days (RuSCDays 2023) Rev. Selected Papers Part II, LCNS Vol. 14389, Springer, Cham, 48-61.
- E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, Estimating of combinatorial characteristics for diagonal Latin squares, Recognition — 2017 (2017), pp. 98-100 (in Russian).
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, and V. S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017, pp. 6-14. urn:nbn:de:0074-1973-0.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Using Volunteer Computing to Study Some Features of Diagonal Latin Squares. Open Engineering. Vol. 7. Iss. 1. 2017, pp. 453-460. DOI: 10.1515/eng-2017-0052
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, and V. S. Titov, Estimating the Number of Transversals for Diagonal Latin Squares of Small Order, Telecommunications. 2018. No. 1, pp. 12-21 (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021, pp. 7-17. (in Russian)
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, I. I. Kurochkin, A. M. Albertyan, On the number of transversals in diagonal Latin squares of even orders (in Russian), Cloud and distributed computing systems, within the National supercomputing forum (NSCF - 2023). Pereslavl-Zalessky, 2023. pp. 101-105.
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022, pp. 314-315.
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
A287645
Minimum number of transversals in a diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 8, 3, 32, 7, 8, 68
Offset: 1
From _Eduard I. Vatutin_, Apr 24 2021: (Start)
For example, diagonal Latin square
0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1
has 4 diagonal transversals (see A287648)
0 . . . . 1 . . . . 2 . . . . 3
. . 1 . . . . 0 3 . . . . 2 . .
. . . 2 . . 3 . . 0 . . 1 . . .
. 3 . . 2 . . . . . . 1 . . 0 .
and 4 not diagonal transversals
0 . . . . 1 . . . . 2 . . . . 3
. 2 . . 3 . . . . . . 0 . . 1 .
. . 3 . . . . 2 1 . . . . 0 . .
. . . 1 . . 0 . . 3 . . 2 . . .
total 8 transversals. (End)
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- E. I. Vatutin, About the minimal and maximal number of transversals in diagonal Latin squares of order 9 (in Russian).
- Eduard I. Vatutin, Best examples presently known.
- E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, Estimating of combinatorial characteristics for diagonal Latin squares, Recognition — 2017 (2017), pp. 98-100 (in Russian)
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Enumerating the Transversals for Diagonal Latin Squares of Small Order. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017. pp. 6-14. urn:nbn:de:0074-1973-0.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, Using Volunteer Computing to Study Some Features of Diagonal Latin Squares. Open Engineering. Vol. 7. Iss. 1. 2017. pp. 453-460. DOI: 10.1515/eng-2017-0052
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, and V. S. Titov, Estimating the Number of Transversals for Diagonal Latin Squares of Small Order, Telecommunications. 2018. No. 1. pp. 12-21 (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, I. I. Kurochkin, A. M. Albertyan, On the number of transversals in diagonal Latin squares of even orders (in Russian), Cloud and distributed computing systems, within the National supercomputing forum (NSCF - 2023). Pereslavl-Zalessky, 2023. pp. 101-105.
- E. Vatutin, A. Belyshev, N. Nikitina, and M. Manzuk, Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10, Communications in Computer and Information Science, Vol. 1304, Springer, 2020, pp. 127-146, DOI: 10.1007/978-3-030-66895-2_9.
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, I. I. Kurochkin, A. M. Albertyan, A. V. Kripachev, and A. I. Pykhtin, Methods for getting spectra of fast computable numerical characteristics of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 19-23. (in Russian)
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
- Index entries for sequences related to Latin squares and rectangles.
A345370
a(n) is the number of distinct numbers of diagonal transversals that a diagonal Latin square of order n can have.
Original entry on oeis.org
1, 0, 0, 1, 2, 2, 14, 47, 182
Offset: 1
For n=7 the number of diagonal transversals that a diagonal Latin square of order 7 may have is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, or 27. Since there are 14 distinct values, a(7)=14.
- Eduard I. Vatutin, About the spectra of numerical characteristics of diagonal Latin squares of orders 1-7 (in Russian).
- Eduard I. Vatutin, About the spectra of numerical characteristics of diagonal Latin squares of order 8 (in Russian).
- Eduard I. Vatutin, On the falsity of conjecture that spectra of diagonal transversals for diagonal Latin squares of order 12 is solid (in Russian).
- Eduard I. Vatutin, Graphical representation of the spectra.
- Eduard I. Vatutin, About the results of experiment with spectra of diagonal Latin squares using Brute Force and distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Eduard I. Vatutin, Proving lists (1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13).
- E. I. Vatutin, Distributed diagonalization strategy for Latin squares, Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2023. pp. 309-311. (in Russian)
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, I. I. Kurochkin, A. M. Albertyan, A. V. Kripachev, A. I. Pykhtin, Methods for getting spectra of fast computable numerical characteristics of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 19-23. (in Russian)
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, Heuristic method for getting approximations of spectra of numerical characteristics for diagonal Latin squares, Intellectual information systems: trends, problems, prospects, Kursk, 2022. pp. 35-41. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
A342998
Minimum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.
Original entry on oeis.org
1, 0, 5, 27, 0, 4523, 128818, 0, 204330233, 11232045257
Offset: 0
For n=2 one of best cyclic diagonal Latin squares of order 5
0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2
has a(2)=5 diagonal transversals:
0 . . . . . 1 . . . . . 2 . . . . . 3 . . . . . 4
. . 4 . . . . . 0 . . . . . 1 2 . . . . . 3 . . .
. . . . 3 4 . . . . . 0 . . . . . 1 . . . . . 2 .
. 2 . . . . . 3 . . . . . 4 . . . . . 0 1 . . . .
. . . 1 . . . . . 2 3 . . . . . 4 . . . . . 0 . .
A360220
Maximum number of diagonal transversals in an orthogonal diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 4, 5, 0, 27, 120, 333
Offset: 1
- Eduard I. Vatutin, About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11 (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
A354068
Minimum number of diagonal transversals in an orthogonal diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 4, 5, 0, 8, 8, 14
Offset: 1
One of the best orthogonal diagonal Latin squares of order n=9
0 1 2 3 4 5 6 7 8
1 2 3 8 6 4 7 0 5
5 4 6 0 7 8 3 1 2
7 3 1 5 2 6 0 8 4
8 7 4 6 1 2 5 3 0
3 0 5 4 8 7 1 2 6
4 6 7 2 3 0 8 5 1
6 5 8 1 0 3 2 4 7
2 8 0 7 5 1 4 6 3
has orthogonal diagonal mate
0 1 2 3 4 5 6 7 8
2 3 8 7 5 6 4 1 0
1 5 4 8 6 0 2 3 7
8 7 0 6 1 3 5 4 2
5 0 1 2 7 8 3 6 4
4 6 7 0 3 2 8 5 1
3 8 5 4 0 7 1 2 6
7 4 6 5 2 1 0 8 3
6 2 3 1 8 4 7 0 5
and 14 diagonal transversals, which is the minimal number, so a(9)=14.
A387236
Minimum number of diagonal transversals in an extended self-orthogonal diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 4, 5, 0, 8, 16, 15, 75
Offset: 1
A376587
Minimum number of diagonal transversals in diagonalized cyclic diagonal Latin squares of order 2n+1.
Original entry on oeis.org
1, 0, 5, 27, 241, 4523, 127339
Offset: 0
Showing 1-10 of 11 results.
Comments