cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A287648 Maximum number of diagonal transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 6, 27, 120, 333
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

From Eduard I. Vatutin, Oct 04 2020: (Start)
A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element.
A diagonal transversal is a transversal that includes exactly one element from the main diagonal and exactly one from the antidiagonal. For squares of odd orders, these elements can coincide at the intersection of the diagonals. (End)
A007016 is an upper bound for the number of diagonal transversals in a Latin square: A287647(n) <= a(n) <= A007016(n). - Eduard I. Vatutin, Jan 02 2020
a(11) >= 4828, a(12) >= 24901, a(13) >= 131106, a(14) >= 364596, a(15) >= 389318. - Natalia Makarova, Tomáš Brada, Harry White, Oct 04 2020
a(16) >= 32172800, a(18) >= 280308432. - Natalia Makarova, Tomáš Brada, Dec 25 2020
a(12) >= 28496. - Natalia Makarova, Harry White, Jan 23 2021
a(14) >= 380718, a(20) >= 90010806304, a(21) >= 51162162017, a(22) >= 3227747329246. The number of D-transversals for orders 20 - 22 was calculated by a volunteer. - Natalia Makarova, Tomáš Brada, Harry White, Mar 17 2021
All cyclic diagonal Latin squares (see A338562) are diagonal Latin squares, so A342997((n-1)/2) <= a(n). - Eduard I. Vatutin, Apr 26 2021
a(14) >= 383578, a(15) >= 398974. - Natalia Makarova, Tomáš Brada, Jan 13 2022
a(10) >= 890, a(12) >= 30192, a(14) >= 490218, a(15) >= 4620434, a(17) >= 204995269, a(18) >= 281593874, a(19) >= 11254190082. - Eduard I. Vatutin, Jul 22 2020, updated Mar 01 2025
For most orders n, at least one diagonal Latin square with the maximal number of diagonal transversals has an orthogonal mate and a(n) = A360220(n). Known exceptions: n=6 and n=10. - Eduard I. Vatutin, Feb 17 2023

Examples

			For example, the diagonal Latin square
  0 1 2 3
  3 2 1 0
  1 0 3 2
  2 3 0 1
has 4 diagonal transversals:
  0 . . .    . 1 . .    . . 2 .    . . . 3
  . . 1 .    . . . 0    3 . . .    . 2 . .
  . . . 2    . . 3 .    . 0 . .    1 . . .
  . 3 . .    2 . . .    . . . 1    . . 0 .
In addition there are 4 other transversals that are not diagonal transversals and are therefore not included here.
From _Natalia Makarova_, Oct 04 2020: (Start)
The following DLS of order 14 has 364596 diagonal transversals:
   0  7  6 11  9  3  4  5  2 12 13  8 10  1
   6  1 11  5 10 12  2  3  9  7  4 13  0  8
   5 11  2 12  8  1  7 10  0  6  9  3 13  4
  13  6  5  3  1 10  9 12  7  0  2  4  8 11
  12  3 10  1  4 13  8  6 11  5  0  7  2  9
  10 12  1  8  2  5 11 13  4  3  6  0  9  7
   9  2  7  0  5 11  6  8 13  4  1 10  3 12
   4 13  3  9  6  0 10  7  1  8 12  2 11  5
   2  4  9 10 11  6  1  0  8 13  7 12  5  3
   1 10  8 13 12  2  5  4  3  9 11  6  7  0
   3  5 12  7 13  8  0  1  6 11 10  9  4  2
   8  0 13  4  7  9  3  2 12 10  5 11  1  6
   7  9  0  6  3  4 13 11  5  2  8  1 12 10
  11  8  4  2  0  7 12  9 10  1  3  5  6 13
(End)
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, and W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics. 1992. Vol. 139. pp. 43-49.

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Dec 08 2020

A354068 Minimum number of diagonal transversals in an orthogonal diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 0, 8, 8, 14
Offset: 1

Views

Author

Eduard I. Vatutin, May 16 2022

Keywords

Comments

An orthogonal diagonal Latin square is a diagonal Latin square with at least one orthogonal diagonal mate.
a(10) <= 60, a(11) <= 279, a(12) <= 588, a(13) <= 9610.
Every orthogonal diagonal Latin square is a diagonal Latin square, so A287647(n) <= a(n) <= A360220(n) <= A287648(n). - Eduard I. Vatutin, Mar 03 2023

Examples

			One of the best orthogonal diagonal Latin squares of order n=9
  0 1 2 3 4 5 6 7 8
  1 2 3 8 6 4 7 0 5
  5 4 6 0 7 8 3 1 2
  7 3 1 5 2 6 0 8 4
  8 7 4 6 1 2 5 3 0
  3 0 5 4 8 7 1 2 6
  4 6 7 2 3 0 8 5 1
  6 5 8 1 0 3 2 4 7
  2 8 0 7 5 1 4 6 3
has orthogonal diagonal mate
  0 1 2 3 4 5 6 7 8
  2 3 8 7 5 6 4 1 0
  1 5 4 8 6 0 2 3 7
  8 7 0 6 1 3 5 4 2
  5 0 1 2 7 8 3 6 4
  4 6 7 0 3 2 8 5 1
  3 8 5 4 0 7 1 2 6
  7 4 6 5 2 1 0 8 3
  6 2 3 1 8 4 7 0 5
and 14 diagonal transversals, which is the minimal number, so a(9)=14.
		

Crossrefs

A387236 Minimum number of diagonal transversals in an extended self-orthogonal diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 0, 8, 16, 15, 75
Offset: 1

Views

Author

Eduard I. Vatutin, Aug 23 2025

Keywords

Comments

A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square orthogonal to its transpose. An extended self-orthogonal diagonal Latin square (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square from the same main class. SODLS is a special case of ESODLS.

Crossrefs

A387360 Maximum number of diagonal transversals in an extended self-orthogonal diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 0, 27, 96, 333, 152
Offset: 1

Views

Author

Eduard I. Vatutin, Aug 27 2025

Keywords

Comments

A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square orthogonal to its transpose. An extended self-orthogonal diagonal Latin square (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square from the same main class. SODLS is a special case of ESODLS.

Crossrefs

Showing 1-4 of 4 results.