cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A274171 Number of diagonal Latin squares of order n with the first row in order.

Original entry on oeis.org

1, 0, 0, 2, 8, 128, 171200, 7447587840, 5056994653507584
Offset: 1

Views

Author

Eduard I. Vatutin, Jul 07 2016

Keywords

Comments

A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element. - Andrew Howroyd, Sep 29 2020

Examples

			The a(4) = 2 diagonal Latin squares are:
   0 1 2 3   0 1 2 3
   2 3 0 1   3 2 1 0
   3 2 1 0   1 0 3 2
   1 0 3 2   2 3 0 1
.
The a(5) = 8 diagonal Latin squares are:
   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
   1 3 4 2 0   1 4 3 0 2   2 3 4 0 1   2 4 1 0 3
   4 2 1 0 3   3 2 1 4 0   4 0 1 2 3   4 0 3 2 1
   2 0 3 4 1   4 3 0 2 1   1 2 3 4 0   3 2 4 1 0
   3 4 0 1 2   2 0 4 1 3   3 4 0 1 2   1 3 0 4 2
.
   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
   3 4 0 1 2   3 4 1 2 0   4 2 0 1 3   4 2 3 0 1
   1 2 3 4 0   4 2 3 0 1   1 4 3 2 0   3 4 1 2 0
   4 0 1 2 3   2 0 4 1 3   3 0 1 4 2   1 3 0 4 2
   2 3 4 0 1   1 3 0 4 2   2 3 4 0 1   2 0 4 1 3
		

Crossrefs

Formula

a(n) = A274806(n)/n!.

Extensions

a(9) added from Vatutin et al. (2016) by Max Alekseyev, Oct 05 2016
a(9) corrected by Eduard I. Vatutin, Oct 20 2016

A287648 Maximum number of diagonal transversals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 4, 5, 6, 27, 120, 333
Offset: 1

Views

Author

Eduard I. Vatutin, May 29 2017

Keywords

Comments

From Eduard I. Vatutin, Oct 04 2020: (Start)
A diagonal Latin square is a Latin square in which both the main diagonal and main antidiagonal contain each element.
A diagonal transversal is a transversal that includes exactly one element from the main diagonal and exactly one from the antidiagonal. For squares of odd orders, these elements can coincide at the intersection of the diagonals. (End)
A007016 is an upper bound for the number of diagonal transversals in a Latin square: A287647(n) <= a(n) <= A007016(n). - Eduard I. Vatutin, Jan 02 2020
a(11) >= 4828, a(12) >= 24901, a(13) >= 131106, a(14) >= 364596, a(15) >= 389318. - Natalia Makarova, Tomáš Brada, Harry White, Oct 04 2020
a(16) >= 32172800, a(18) >= 280308432. - Natalia Makarova, Tomáš Brada, Dec 25 2020
a(12) >= 28496. - Natalia Makarova, Harry White, Jan 23 2021
a(14) >= 380718, a(20) >= 90010806304, a(21) >= 51162162017, a(22) >= 3227747329246. The number of D-transversals for orders 20 - 22 was calculated by a volunteer. - Natalia Makarova, Tomáš Brada, Harry White, Mar 17 2021
All cyclic diagonal Latin squares (see A338562) are diagonal Latin squares, so A342997((n-1)/2) <= a(n). - Eduard I. Vatutin, Apr 26 2021
a(14) >= 383578, a(15) >= 398974. - Natalia Makarova, Tomáš Brada, Jan 13 2022
a(10) >= 890, a(12) >= 30192, a(14) >= 490218, a(15) >= 4620434, a(17) >= 204995269, a(18) >= 281593874, a(19) >= 11254190082. - Eduard I. Vatutin, Jul 22 2020, updated Mar 01 2025
For most orders n, at least one diagonal Latin square with the maximal number of diagonal transversals has an orthogonal mate and a(n) = A360220(n). Known exceptions: n=6 and n=10. - Eduard I. Vatutin, Feb 17 2023

Examples

			For example, the diagonal Latin square
  0 1 2 3
  3 2 1 0
  1 0 3 2
  2 3 0 1
has 4 diagonal transversals:
  0 . . .    . 1 . .    . . 2 .    . . . 3
  . . 1 .    . . . 0    3 . . .    . 2 . .
  . . . 2    . . 3 .    . 0 . .    1 . . .
  . 3 . .    2 . . .    . . . 1    . . 0 .
In addition there are 4 other transversals that are not diagonal transversals and are therefore not included here.
From _Natalia Makarova_, Oct 04 2020: (Start)
The following DLS of order 14 has 364596 diagonal transversals:
   0  7  6 11  9  3  4  5  2 12 13  8 10  1
   6  1 11  5 10 12  2  3  9  7  4 13  0  8
   5 11  2 12  8  1  7 10  0  6  9  3 13  4
  13  6  5  3  1 10  9 12  7  0  2  4  8 11
  12  3 10  1  4 13  8  6 11  5  0  7  2  9
  10 12  1  8  2  5 11 13  4  3  6  0  9  7
   9  2  7  0  5 11  6  8 13  4  1 10  3 12
   4 13  3  9  6  0 10  7  1  8 12  2 11  5
   2  4  9 10 11  6  1  0  8 13  7 12  5  3
   1 10  8 13 12  2  5  4  3  9 11  6  7  0
   3  5 12  7 13  8  0  1  6 11 10  9  4  2
   8  0 13  4  7  9  3  2 12 10  5 11  1  6
   7  9  0  6  3  4 13 11  5  2  8  1 12 10
  11  8  4  2  0  7 12  9 10  1  3  5  6 13
(End)
		

References

  • J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, and W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics. 1992. Vol. 139. pp. 43-49.

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 29 2017
a(9) added by Eduard I. Vatutin, Dec 08 2020

A305571 Number of diagonal Latin squares of order n with at least one orthogonal diagonal mate.

Original entry on oeis.org

1, 0, 0, 48, 480, 0, 1290240, 25484820480, 34482663290880
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 05 2018

Keywords

Crossrefs

Formula

a(n) = A305570(n) * n!.
a(n) = A274806(n) - A305569(n).

Extensions

a(9) added by Eduard I. Vatutin, Dec 22 2020

A309283 Number of equivalence classes of X-based filling of diagonals in a diagonal Latin square of order n.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 3, 3, 20, 20, 67, 67, 596, 596
Offset: 0

Views

Author

Eduard I. Vatutin, Jul 06 2020

Keywords

Comments

Used for getting strong canonical forms (SCFs) of the diagonal Latin squares and for fast enumerating of the diagonal Latin squares based on equivalence classes.
K1 = |C[1]|*f[1] + |C[2]|*f[2] + ... + |C[m]|*f[m],
K2 = K1 * n!,
where m = a(n), number of equivalence classes for X-based filling of diagonals in a diagonal Latin square of order n;
C[i], corresponding equivalence classes with cardinalities |C[i]|, 1 <= i <= m;
f[i], the number of diagonal Latin squares corresponds to the each item from equivalence class C[i], 1 <= i <= m;
K1 = A274171(n), number of diagonal Latin squares of order n with fixed first row;
K2 = A274806(n), number of diagonal Latin squares of order n.
For all t>0 a(2*t) = a(2*t+1). - Eduard I. Vatutin, Aug 21 2020
a(14) >= 5225, a(15) >= 5225. - Natalia Makarova, Sep 12 2020
The number of solutions in an equivalence class with the main diagonal in ascending order is at most 4*2^r*r! where r = floor(n/2). This maximum is achieved for orders n >= 10. - Andrew Howroyd, Mar 27 2023

Examples

			For order n=4 there are a(4)=2 equivalence classes. First of them C[1] includes two X-based fillings of diagonals
   0..1  0..2
   .13.  .10.
   .02.  .32.
   2..3  1..3
and second C[2] also includes two X-based fillings of diagonals
   0..1  0..2
   .10.  .13.
   .32.  .02.
   2..3  1..3
It is easy to see that f[1] = 0 and f[2] = 1, so K1(4) = A274171(4) = 2*0 + 2*1 = 2 and K2(4) = A274806(4) = K1(4) * 4! = 2 * 24 = 48.
		

Crossrefs

Formula

a(n) = A338084(floor(n/2)).

Extensions

a(11) added by Eduard I. Vatutin, Aug 21 2020
a(12)-a(13) by Harry White, added by Natalia Makarova, Sep 12 2020
a(0)=1 prepended by Andrew Howroyd, Oct 31 2020

A307166 Minimum number of loops in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 12, 10, 27, 21, 40
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

A loop in a Latin square is a sequence of cells v1=L[i1,j1] -> v2=L[i1,j2] -> v1=L[i2,j2] -> ... -> v2=L[im,j1] -> v1=L[i1,j1] of length 2*m that consists of a pair of values {v1, v2}.
For diagonal Latin squares of order 4 all loops are intercalates. - Eduard I. Vatutin, Oct 05 2020
From Eduard I. Vatutin, Oct 26 2020: (Start)
Every intercalate is a partial loop and every partial loop is a loop, so 0 <= A307163(n) <= A307170(n) <= a(n).
0 <= a(n) <= A307167(n).
(End)

Examples

			For example, the square
  2 4 3 5 0 1
  1 0 4 3 2 5
  0 2 5 4 1 3
  5 3 0 1 4 2
  4 5 1 2 3 0
  3 1 2 0 5 4
has a loop
  2 4 . . . .
  . . . . . .
  . 2 . 4 . .
  . . . . . .
  4 . . 2 . .
  . . . . . .
consisting of the sequence of cells L[1,1]=2 -> L[1,2]=4 -> L[3,2]=2 -> L[3,4]=4 -> L[5,4]=2 -> L[5,1]=4 -> L[1,1]=2 with length 6.
The total number of loops for this square is 21.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 05 2020

A307167 Maximum number of loops in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 12, 14, 27, 53, 112
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

A loop in a Latin square is a sequence of cells v1=L[i1,j1] -> v2=L[i1,j2] -> v1=L[i2,j2] -> ... -> v2=L[im,j1] -> v1=L[i1,j1] of length 2*m that consists of a pair of values {v1, v2}.
For diagonal Latin squares of order 4 all loops are intercalates. - Eduard I. Vatutin, Oct 05 2020

Examples

			For example, the square
  2 4 3 5 0 1
  1 0 4 3 2 5
  0 2 5 4 1 3
  5 3 0 1 4 2
  4 5 1 2 3 0
  3 1 2 0 5 4
has a loop
  2 4 . . . .
  . . . . . .
  . 2 . 4 . .
  . . . . . .
  4 . . 2 . .
  . . . . . .
consisting of the sequence of cells L[1,1]=2 -> L[1,2]=4 -> L[3,2]=2 -> L[3,4]=4 -> L[5,4]=2 -> L[5,1]=4 -> L[1,1]=2 with length 6.
The total number of loops for this square is 21.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 05 2020

A307170 Minimum number of partial loops in a diagonal Latin square of order n.

Original entry on oeis.org

0, 0, 0, 12, 0, 21, 0, 24
Offset: 1

Views

Author

Eduard I. Vatutin, Mar 27 2019

Keywords

Comments

A loop in a Latin square is a sequence of cells v1=L[i1,j1] -> v2=L[i1,j2] -> v1=L[i2,j2] -> ... -> v2=L[im,j1] -> v1=L[i1,j1] of length 2*m that consists of a pair of values {v1, v2}. A partial loop is a loop with length < 2*n.
From Eduard I. Vatutin, Oct 20 2020: (Start)
Every intercalate is a partial loop and every partial loop is a loop, so 0 <= A307163(n) <= a(n) <= A307166(n).
0 <= a(n) <= A307171(n).
(End)

Examples

			For example, the square
  2 4 3 5 0 1
  1 0 4 3 2 5
  0 2 5 4 1 3
  5 3 0 1 4 2
  4 5 1 2 3 0
  3 1 2 0 5 4
has a loop
  2 4 . . . .
  . . . . . .
  . 2 . 4 . .
  . . . . . .
  4 . . 2 . .
  . . . . . .
consisting of the sequence of cells L[1,1]=2 -> L[1,2]=4 -> L[3,2]=2 -> L[3,4]=4 -> L[5,4]=2 -> L[5,1]=4 -> L[1,1]=2 with length 6 < 12.
The total number of loops for this square is 21, all of which are partial.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 05 2020

A328873 Maximal size of a set of pairwise mutually orthogonal diagonal Latin squares of order n.

Original entry on oeis.org

1, 0, 0, 2, 2, 1, 4, 6, 6
Offset: 1

Views

Author

Eduard I. Vatutin, Oct 29 2019

Keywords

Comments

From Andrew Howroyd, Nov 08 2019: (Start)
A diagonal Latin square of order n is an n X n array with every integer from 0 to n-1 in every row, every column, and both main diagonals.
Of course if even one example exists, then a(n) >= 1.
A274806 gives the number of diagonal Latin squares and A274806(6) is nonzero. This suggests that although it is not possible to have a pair of orthogonal diagonal Latin squares, a(6) should be 1 here. (End)
a(1) = 1 because there is only one (trivial) diagonal Latin square of order 1. It is orthogonal to itself, so if we allow the consideration of multiple copies of the same diagonal Latin square, we get a(1) = infinity instead.
From Eduard I. Vatutin, Mar 27 2021: (Start)
a(n) <= A287695(n) + 1.
a(p) >= A123565(p) = p-3 for all odd prime p due to existence of clique from cyclic MODLS of order p with at least A123565(p) items. It seems that for some orders p clique from cyclic MODLS can be extended by adding none cyclic DLS that are orthogonal to all cyclic DLS. (End)
a(n) <= A001438(n). - Max Alekseyev, Nov 08 2019
a(10) >= 2; a(11) >= 8; a(12) >= 4; a(13) >= 10; a(14) >= 2; a(15) >= 4. - Natalia Makarova, Sep 03 2020; updated May 30 2021
a(16) >= 14, a(17) >= 14, a(18) >= 2, a(19) >= 16, a(20) >= 2. - Natalia Makarova, Jan 08 2021

Examples

			Orthogonal pair of Diagonal Latin squares of order 18:
   1  5 15 16 17 18  2 14  4 13  3  7 12 10  8  6 11  9
   8  2  6 15 16 17 18  1  5 14  4 13 11  9  7 12 10  3
  14  9  3  7 15 16 17  2  6  1  5 12 10  8 13 11  4 18
  13  1 10  4  8 15 16  3  7  2  6 11  9 14 12  5 18 17
  12 14  2 11  5  9 15  4  8  3  7 10  1 13  6 18 17 16
  11 13  1  3 12  6 10  5  9  4  8  2 14  7 18 17 16 15
   3 12 14  2  4 13  7  6 10  5  9  1  8 18 17 16 15 11
   9 10 11 12 13 14  1 15 16 17 18  8  7  6  5  4  3  2
   6  7  8  9 10 11 12 18 17 16 15  5  4  3  2  1 14 13
   5  6  7  8  9 10 11 16 15 18 17  4  3  2  1 14 13 12
   7  8  9 10 11 12 13 17 18 15 16  6  5  4  3  2  1 14
   4 15 16 17 18  1  8 13  3 12  2 14  6 11  9  7  5 10
  15 16 17 18 14  7  9 12  2 11  1  3 13  5 10  8  6  4
  16 17 18 13  6  8  3 11  1 10 14 15  2 12  4  9  7  5
  17 18 12  5  7  2  4 10 14  9 13 16 15  1 11  3  8  6
  18 11  4  6  1  3  5  9 13  8 12 17 16 15 14 10  2  7
  10  3  5 14  2  4  6  8 12  7 11 18 17 16 15 13  9  1
   2  4 13  1  3  5 14  7 11  6 10  9 18 17 16 15 12  8
and
   1  8 14 13 12 11  3  9  6  5  7  4 15 16 17 18 10  2
   5  2  9  1 14 13 12 10  7  6  8 15 16 17 18 11  3  4
  15  6  3 10  2  1 14 11  8  7  9 16 17 18 12  4  5 13
  16 15  7  4 11  3  2 12  9  8 10 17 18 13  5  6 14  1
  17 16 15  8  5 12  4 13 10  9 11 18 14  6  7  1  2  3
  18 17 16 15  9  6 13 14 11 10 12  1  7  8  2  3  4  5
   2 18 17 16 15 10  7  1 12 11 13  8  9  3  4  5  6 14
  14  1  2  3  4  5  6 15 16 17 18 13 12 11 10  9  8  7
   4  5  6  7  8  9 10 17 18 15 16  3  2  1 14 13 12 11
  13 14  1  2  3  4  5 18 17 16 15 12 11 10  9  8  7  6
   3  4  5  6  7  8  9 16 15 18 17  2  1 14 13 12 11 10
   7 13 12 11 10  2  1  8  5  4  6 14  3 15 16 17 18  9
  12 11 10  9  1 14  8  7  4  3  5  6 13  2 15 16 17 18
  10  9  8 14 13  7 18  6  3  2  4 11  5 12  1 15 16 17
   8  7 13 12  6 18 17  5  2  1  3  9 10  4 11 14 15 16
   6 12 11  5 18 17 16  4  1 14  2  7  8  9  3 10 13 15
  11 10  4 18 17 16 15  3 14 13  1  5  6  7  8  2  9 12
   9  3 18 17 16 15 11  2 13 12 14 10  4  5  6  7  1  8
so a(18) >= 2.
		

Crossrefs

Extensions

a(6) corrected by Max Alekseyev and Andrew Howroyd, Nov 08 2019
a(9) added by Eduard I. Vatutin, Feb 02 2021

A305569 Number of bachelor diagonal Latin squares of order n.

Original entry on oeis.org

0, 0, 0, 0, 480, 92160, 861557760, 300261256888320, 1835082185382168791040
Offset: 1

Views

Author

Eduard I. Vatutin, Jun 05 2018

Keywords

Comments

A bachelor diagonal Latin square is one with no orthogonal mate.

Crossrefs

Formula

a(n) = A305568(n) * n!.
a(n) = A274806(n) - A305571(n).

Extensions

a(9) added by Eduard I. Vatutin, Dec 22 2020

A307839 Minimum number of Latin subrectangles in a diagonal Latin square of order n.

Original entry on oeis.org

1, 0, 0, 137, 336, 884, 1968, 4545
Offset: 1

Views

Author

Eduard I. Vatutin, May 01 2019

Keywords

Comments

An Latin subrectangle is a m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n.

Examples

			For example, the square
  0 1 2 3 4 5 6
  4 2 6 5 0 1 3
  3 6 1 0 5 2 4
  6 3 5 4 1 0 2
  1 5 3 2 6 4 0
  5 0 4 6 2 3 1
  2 4 0 1 3 6 5
has a Latin subrectangle
  . . . . . . .
  . . 6 5 0 1 3
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . . . . . .
  . . 0 1 3 6 5
The total number of Latin subrectangles for this square is 2119.
		

Crossrefs

Extensions

a(8) added by Eduard I. Vatutin, Oct 06 2020
Showing 1-10 of 11 results. Next