A305570
Number of diagonal Latin squares of order n with the first row in order and at least one orthogonal diagonal mate.
Original entry on oeis.org
1, 0, 0, 2, 4, 0, 256, 632064, 95024976
Offset: 1
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- E. Vatutin and A. Belyshev, Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and I. I. Citerra, Estimation of the probability of finding orthogonal diagonal Latin squares among general diagonal Latin squares, Recognition - 2018. Kursk: SWSU, 2018. pp. 72-74. (in Russian)
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, Additional calculated results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Eduard I. Vatutin, List of all main classes of orthogonal diagonal Latin squares of orders 1-8.
- Index entries for sequences related to Latin squares and rectangles.
A309599
Number of extended self-orthogonal diagonal Latin squares of order n.
Original entry on oeis.org
1, 0, 0, 48, 480, 0, 1290240, 185794560, 8867730493440, 1852743352320000
Offset: 1
The diagonal Latin square
0 1 2 3 4 5 6 7 8 9
1 2 0 4 5 7 9 8 6 3
5 0 1 6 3 9 8 2 4 7
9 3 5 8 2 1 7 4 0 6
4 6 3 5 7 8 0 9 2 1
8 4 6 9 1 3 2 5 7 0
7 8 9 0 6 4 5 1 3 2
2 9 4 7 8 0 3 6 1 5
6 5 7 1 0 2 4 3 9 8
3 7 8 2 9 6 1 0 5 4
has orthogonal diagonal Latin square
0 1 2 3 4 5 6 7 8 9
3 5 9 8 6 2 0 1 4 7
4 3 8 7 2 1 9 0 5 6
6 9 3 4 8 0 1 2 7 5
7 2 0 1 9 3 5 8 6 4
2 0 1 5 7 6 4 9 3 8
8 6 4 2 0 9 7 5 1 3
1 7 6 0 5 4 8 3 9 2
9 8 5 6 1 7 3 4 2 0
5 4 7 9 3 8 2 6 0 1
from the same main class.
- E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian).
- E. I. Vatutin, About the lower bound of number of ESODLS of order 10 (in Russian).
- E. I. Vatutin, List of all main classes of extended self-orthogonal diagonal Latin squares of orders 1-8.
- Eduard I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- E. I. Vatutin and A. D. Belyshev, About the number of self-orthogonal (SODLS) and doubly self-orthogonal diagonal Latin squares (DSODLS) of orders 1-10. High-performance computing systems and technologies. Vol. 4. No. 1. 2020. pp. 58-63. (in Russian)
- E. Vatutin and A. Belyshev, Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
- Index entries for sequences related to Latin squares and rectangles
A287695
Maximum number of diagonal Latin squares with the first row in ascending order that can be orthogonal to a given diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 1, 1, 0, 3, 824, 614
Offset: 1
From _Eduard I. Vatutin_, Mar 29 2021: (Start)
One of the best existing diagonal Latin squares of order 7
0 1 2 3 4 5 6
2 3 1 5 6 4 0
5 6 4 0 1 2 3
4 0 6 2 3 1 5
6 2 0 1 5 3 4
1 5 3 4 0 6 2
3 4 5 6 2 0 1
has 3 orthogonal mates
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
5 6 4 0 1 2 3 3 4 5 6 2 0 1 6 2 0 1 5 3 4
1 5 3 4 0 6 2 4 0 6 2 3 1 5 3 4 5 6 2 0 1
6 2 0 1 5 3 4 2 3 1 5 6 4 0 1 5 3 4 0 6 2
3 4 5 6 2 0 1 5 6 4 0 1 2 3 2 3 1 5 6 4 0
2 3 1 5 6 4 0 6 2 0 1 5 3 4 4 0 6 2 3 1 5
4 0 6 2 3 1 5 1 5 3 4 0 6 2 5 6 4 0 1 2 3
so a(7)=3. (End)
- Natalia Makarova, Diagonal Latin square with 10 orthogonal squares
- Natalia Makarova, DB CF ODLS of order 9
- Natalia Makarova, Maximum number of normalized ODLS from one DLS
- Natalia Makarova, Comments for result a(12) >= 3855983322
- Natalia Makarova, New boundaries for maximum number of normalized orthogonal diagonal Latin squares to one diagonal Latin square
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian).
- Eduard I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru, square of order 9 with 516 orthogonal squares (in Russian).
- Eduard I. Vatutin, About the A328873(N)-1 <= A287695(N) inequality between the maximum cardinality of clique and the maximum number of orthogonal normalized mates for one diagonal Latin square (in Russian).
- Eduard I. Vatutin, About the diagonal Latin square of order 12 with 1764493860 orthogonal diagonal mates (in Russian).
- Eduard I. Vatutin, Duplicate solutions removing using parallel and distributed DLX (in Russian).
- Eduard I. Vatutin, Enumerating the Main Classes of Cyclic and Pandiagonal Latin Squares, Recognition — 2021, pp. 77-79. (in Russian)
- Eduard I. Vatutin, Proving list (best known examples).
- Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina and Vitaly S. Titov, Central symmetry properties for diagonal Latin squares, Problems of Information Technology (2019) No. 2, 3-8.
- Eduard I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk and V. S. Titov, Combinatorial characteristics estimating for pairs of orthogonal diagonal Latin squares, Multicore processors, parallel programming, FPGA, signal processing systems (2017), pp. 104-111 (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021). Tula, 2021. pp. 7-17. (in Russian)
- E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9 (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022. pp. 314-315.
- Index entries for sequences related to Latin squares and rectangles.
A330391
Number of main classes of diagonal Latin squares of order n with at least one orthogonal diagonal mate.
Original entry on oeis.org
1, 0, 0, 1, 1, 0, 5, 1105, 75307
Offset: 1
- Natalia Makarova, Database CF ODLS of order n
- E. I. Vatutin, Discussion about properties of diagonal Latin squares (in Russian)
- E. I. Vatutin, List of all main classes of orthogonal diagonal Latin squares of orders 1-8.
- E. I. Vatutin, List of all main classes of orthogonal diagonal Latin squares of order 9.
- E. I. Vatutin, List of known main classes of orthogonal diagonal Latin squares of order 11.
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- E. Vatutin, A. Belyshev, Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
- Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Index entries for sequences related to Latin squares and rectangles.
A287762
Number of self-orthogonal diagonal Latin squares of order n.
Original entry on oeis.org
1, 0, 0, 48, 480, 0, 322560, 46448640, 81587036160, 850065850368000
Offset: 1
0 1 2 3 4 5 6 7 8 9
5 2 0 9 7 8 1 4 6 3
9 5 7 1 8 6 4 3 0 2
7 8 6 4 9 2 5 1 3 0
8 9 5 0 3 4 2 6 7 1
3 6 9 5 2 1 7 0 4 8
4 3 1 7 6 0 8 2 9 5
6 7 8 2 5 3 0 9 1 4
2 0 4 6 1 9 3 8 5 7
1 4 3 8 0 7 9 5 2 6
- E. I. Vatutin, About the number of SODLS of order 10, a(10) value is wrong (in Russian).
- E. I. Vatutin, About the number of SODLS of order 10, corrected value a(10) (in Russian).
- E. I. Vatutin, List of all main classes of self-orthogonal diagonal Latin squares of orders 1-10.
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- E. I. Vatutin and A. D. Belyshev, About the number of self-orthogonal (SODLS) and doubly self-orthogonal diagonal Latin squares (DSODLS) of orders 1-10. High-performance computing systems and technologies. Vol. 4. No. 1. 2020. pp. 58-63. (in Russian)
- E. Vatutin and A. Belyshev, Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
- H. White, Self-orthogonal Diagonal Latin Squares. How many.
- Index entries for sequences related to Latin squares and rectangles.
A360220
Maximum number of diagonal transversals in an orthogonal diagonal Latin square of order n.
Original entry on oeis.org
1, 0, 0, 4, 5, 0, 27, 120, 333
Offset: 1
- Eduard I. Vatutin, About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11 (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
A305569
Number of bachelor diagonal Latin squares of order n.
Original entry on oeis.org
0, 0, 0, 0, 480, 92160, 861557760, 300261256888320, 1835082185382168791040
Offset: 1
- E. I. Vatutin, Discussion about properties of diagonal Latin squares at forum.boinc.ru (in Russian)
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, I. I. Citerra, Estimation of the probability of finding orthogonal diagonal Latin squares among general diagonal Latin squares, Recognition - 2018. Kursk: SWSU, 2018. pp. 72-74. (in Russian)
- Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, Additional calculated results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch (in Russian).
- Index entries for sequences related to Latin squares and rectangles.
A360223
Maximum number of intercalates in an orthogonal diagonal Latin square of order n.
Original entry on oeis.org
0, 0, 0, 12, 0, 0, 18, 112, 72
Offset: 1
- Eduard I. Vatutin, About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11 (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
A333671
Number of doubly self-orthogonal diagonal Latin squares of order n.
Original entry on oeis.org
1, 0, 0, 48, 480, 0, 322560, 46448640, 10381271040, 0
Offset: 1
0 1 2 3 4 5 6 7 8
2 4 3 0 7 6 8 1 5
4 6 7 1 8 2 3 5 0
8 3 5 6 0 7 1 2 4
7 8 1 4 5 3 0 6 2
3 7 0 2 1 8 5 4 6
1 5 4 7 6 0 2 8 3
5 0 6 8 2 1 4 3 7
6 2 8 5 3 4 7 0 1
- R. Lu, S. Liu, and J. Zhang, Searching for Doubly Self-orthogonal Latin Squares. Lecture Notes in Computer Science 6876 (2011), 538-545.
- E. I. Vatutin, About the number of DSODLS of orders 1-10 (in Russian).
- E. I. Vatutin, List of all main classes of doubly self-orthogonal diagonal Latin squares of orders 1-10.
- E. I. Vatutin and A. D. Belyshev, About the number of self-orthogonal (SODLS) and doubly self-orthogonal diagonal Latin squares (DSODLS) of orders 1-10. High-performance computing systems and technologies. Vol. 4. No. 1. 2020. pp. 58-63. (in Russian)
- E. Vatutin and A. Belyshev, Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
- Index entries for sequences related to Latin squares and rectangles.
A360221
Minimum number of intercalates in an orthogonal diagonal Latin square of order n.
Original entry on oeis.org
0, 0, 0, 12, 0, 0, 0, 2, 0
Offset: 1
- Eduard I. Vatutin, About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11 (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, and I. I. Kurochkin, On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17. (in Russian)
- Index entries for sequences related to Latin squares and rectangles.
Showing 1-10 of 10 results.
Comments