A287822 Number T(n,k) of Dyck paths of semilength n such that the maximal number of peaks per level equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 5, 7, 1, 1, 0, 13, 18, 9, 1, 1, 0, 31, 59, 29, 11, 1, 1, 0, 71, 193, 112, 38, 13, 1, 1, 0, 181, 616, 405, 163, 48, 15, 1, 1, 0, 447, 1955, 1514, 648, 220, 59, 17, 1, 1, 0, 1111, 6244, 5565, 2571, 925, 288, 71, 19, 1, 1
Offset: 0
Examples
. T(4,1) = 5: /\ . /\ /\ /\ /\ / \ . / \ /\/ \ / \ / \/\ / \ . /\/ \ / \ / \/\ / \ / \ . . . T(4,2) = 7: /\ /\ /\/\ /\ /\ /\ . /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/ \ . . . /\/\ . /\/\ / \ . / \/\ / \ . . . T(4,3) = 1: /\/\/\ . / \ . . . T(4,4) = 1: /\/\/\/\ . . Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 3, 1, 1; 0, 5, 7, 1, 1; 0, 13, 18, 9, 1, 1; 0, 31, 59, 29, 11, 1, 1; 0, 71, 193, 112, 38, 13, 1, 1; 0, 181, 616, 405, 163, 48, 15, 1, 1; 0, 447, 1955, 1514, 648, 220, 59, 17, 1, 1; ...
Links
- Alois P. Heinz, Rows n = 0..100, flattened
- Wikipedia, Counting lattice paths
Crossrefs
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(j=n, 1, add( b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m), m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j))) end: A:= proc(n, k) option remember; `if`(n=0, 1, (m-> add(b(n, m, j), j=1..m))(min(n, k))) end: T:= (n, k)-> A(n, k)- `if`(k=0, 0, A(n, k-1)): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m]*Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]]; A[n_, k_] := A[n, k] = If[n==0, 1, Sum[b[n, #, j], {j, 1, #}]&[Min[n, k]]]; T[n_, k_] := A[n, k] - If[k==0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
Comments