cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287988 Number of (undirected) paths in the n-antiprism graph.

Original entry on oeis.org

2, 56, 396, 2040, 9130, 37944, 151172, 586608, 2235618, 8407640, 31292844, 115494312, 423283562, 1542120664, 5589611460, 20170172896, 72499928322, 259692909048, 927342338956, 3302291258200, 11730149911914, 41572470711288, 147031327493572, 519029653663056
Offset: 1

Views

Author

Eric W. Weisstein, Jun 03 2017

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Jun 05 2017

Crossrefs

Programs

  • Mathematica
    Table[n RootSum[-1 - # - 3 #^2 + #^3 &, 23 #^n + 32 #^(n + 1) + 5 #^(n + 2) &]/44 - 7 n - 3 n^2 - 2 n^3, {n, 20}]
    LinearRecurrence[{10, -37, 64, -58, 36, -26, 16, -5, 2, -1}, {2, 56, 396, 2040, 9130, 37944, 151172, 586608, 2235618, 8407640}, 20]
    CoefficientList[Series[(2 (2 x^6 + 4 x^5 + x^4 + 24 x^3 - 4 x^2 + 20 x + 1) (1 - 2 x - x^2))/((1 - x)^4 (1 - 3 x - x^2 - x^3)^2), {x, 0, 20}], x]
  • PARI
    Vec(2*(2*x^6+4*x^5+x^4+24*x^3-4*x^2+20*x+1)*(1-2*x-x^2)/((1-x)^4*(1-3*x-x^2-x^3)^2) + O(x^20)) \\ Andrew Howroyd, Jun 05 2017

Formula

From Andrew Howroyd, Jun 05 2017 (Start)
a(n) = 10*a(n-1)-37*a(n-2)+64*a(n-3) -58*a(n-4)+36*a(n-5)-26*a(n-6) +16*a(n-7)-5*a(n-8) +2*a(n-9)-a(n-10) for n>10.
G.f.: 2*x*(2*x^6+4*x^5+x^4+24*x^3-4*x^2+20*x+1) * (1-2*x-x^2) / ((1-x)^4 * (1-3*x-x^2-x^3)^2).
(End)

Extensions

a(1)-a(2) and a(14)-a(24) from Andrew Howroyd, Jun 05 2017