cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338154 a(n) is the number of acyclic orientations of the edges of the n-antiprism.

Original entry on oeis.org

426, 4968, 50640, 486930, 4547088, 41796168, 380789562, 3451622904, 31194607488, 281440825122, 2536622917920, 22848990484344, 205743704494026, 1852238413383048, 16673036119790640, 150072652217086770, 1350735146332489008, 12157047307392618408
Offset: 3

Views

Author

Peter Kagey, Oct 13 2020

Keywords

Comments

Conjectured linear recurrence and g.f. confirmed by Kagey's formula. - Ray Chandler, Mar 10 2024

Examples

			For n = 3, the 3-antiprism is the octahedron (3-dimensional cross-polytope), so a(3) = A033815(3) = 426.
		

Crossrefs

Cf. A033815 (cross-polytope), A058809 (wheel), A334247 (hypercube), A338152 (demihypercube), A338153 (prism).

Programs

  • Mathematica
    A338154[n_] := Round[-2^(1-n)*((7 - Sqrt[13])^n + (7 + Sqrt[13])^n) + 9^n + 5] (* Peter Kagey, Nov 15 2020 *)

Formula

Conjectures from Colin Barker, Oct 13 2020: (Start)
G.f.: 6*x^3*(71 - 379*x + 612*x^2 - 324*x^3) / ((1 - x)*(1 - 9*x)*(1 - 7*x + 9*x^2)).
a(n) = 17*a(n-1) - 88*a(n-2) + 153*a(n-3) - 81*a(n-4) for n>6.
(End)
a(n) = -2^(1-n)*((7-sqrt(13))^n + (7+sqrt(13))^n) + 9^n + 5. - Peter Kagey, Nov 15 2020

A287992 Number of (undirected) paths in the prism graph Y_n.

Original entry on oeis.org

1, 26, 129, 444, 1285, 3366, 8281, 19544, 44829, 100770, 223201, 488916, 1061749, 2289854, 4910505, 10480176, 22275661, 47178234, 99605809, 209704940, 440390181, 922733526, 1929364729, 4026514824, 8388588925, 17448283346, 36238762881, 75161901444, 155692535509, 322122515310
Offset: 1

Views

Author

Eric W. Weisstein, Jun 04 2017

Keywords

Comments

Extended to a(1)-a(2) using the formula.

Crossrefs

Programs

  • Mathematica
    Table[(5 2^(n + 1) - 5 n - n^2 - 13) n, {n, 20}]
    LinearRecurrence[{8, -26, 44, -41, 20, -4}, {1, 26, 129, 444, 1285, 3366}, 20]
    CoefficientList[Series[(1 + 18 x - 53 x^2 + 44 x^3 - 16 x^4)/((1 - x)^4 (1 - 2 x)^2), {x, 0, 20}], x]
  • PARI
    Vec(x*(1 + 18*x - 53*x^2 + 44*x^3 - 16*x^4) / ((1 - x)^4*(1 - 2*x)^2) + O(x^30)) \\ Colin Barker, Jun 04 2017

Formula

a(n) = (5*2^(n + 1) - 5*n - n^2 - 13)*n.
From Colin Barker, Jun 04 2017: (Start)
G.f.: x*(1 + 18*x - 53*x^2 + 44*x^3 - 16*x^4) / ((1 - x)^4*(1 - 2*x)^2).
a(n) = 8*a(n-1) - 26*a(n-2) + 44*a(n-3) - 41*a(n-4) + 20*a(n-5) - 4*a(n-6) for n>6. (End)
Showing 1-2 of 2 results.