A288104 Number of solutions to x^9 + y^9 = z^9 mod n.
1, 4, 9, 20, 25, 36, 55, 112, 189, 100, 121, 180, 109, 220, 225, 704, 289, 756, 487, 500, 495, 484, 529, 1008, 725, 436, 5103, 1100, 841, 900, 1081, 4864, 1089, 1156, 1375, 3780, 973, 1948, 981, 2800, 1681, 1980, 1513, 2420, 4725, 2116, 2209, 6336, 2989, 2900, 2601
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Seiichi Manyama)
Crossrefs
Programs
-
Mathematica
Table[cnt=0; Do[If[Mod[x^9 + y^9 - z^9, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* Vincenzo Librandi, Jul 18 2018 *)
-
PARI
a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^9)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ Andrew Howroyd, Jul 17 2018
-
Python
def A288104(n): ndict = {} for i in range(n): m = pow(i,9,n) if m in ndict: ndict[m] += 1 else: ndict[m] = 1 count = 0 for i in ndict: ni = ndict[i] for j in ndict: k = (i+j) % n if k in ndict: count += ni*ndict[j]*ndict[k] return count # Chai Wah Wu, Jun 05 2017
Extensions
Keyword:mult added by Andrew Howroyd, Jul 17 2018
Comments