cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A146304 Number of distinct ways to place bishops (up to 2n-2) on an n X n chessboard so that no bishop is attacking another and that it is not possible to add another bishop.

Original entry on oeis.org

1, 4, 10, 64, 660, 7744, 111888, 1960000, 40829184, 989479936, 27559645440, 870414361600, 30942459270912, 1225022400102400, 53716785891102720, 2589137004664520704, 136573353235553058816, 7838079929528363843584, 487668908919708442951680, 32741107405951528945844224
Offset: 1

Views

Author

Paolo Bonzini, Oct 29 2008

Keywords

Comments

Number of maximal independent vertex sets (and minimal vertex covers) in the n X n bishop graph. - Eric W. Weisstein, Jun 04 2017

Examples

			For n=2, the a(2) = 4 solutions are to place two bishops on the same row (two solutions) or column (two solutions).
		

Crossrefs

Programs

  • Mathematica
    M[sig_List, n_, k_, d_, x_] := M[sig, n, k, d, x] = If[n == 0, Boole[k == 0], If[k > 0, k*x*M[sig, n - 1, k - 1, d, x], 0] + If[k < n && sig[[n]] > d, (sig[[n]] - d)*x*M[sig, n - 1, k, d + 1, x], 0] + If[k + sig[[n]] - d < n, M[sig, n - 1, k + sig[[n]] - d, sig[[n]], x], 0]];
    Q[sig_List, x_] := M[sig, Length[sig], 0, 0, x];
    Bishop[n_, white_] := Table[n - i + If[white == 1, 1 - Mod[i, 2], Mod[i, 2]], {i, 1, n - If[white == 1, Mod[n, 2], 1 - Mod[n, 2]]}]
    a[n_] := Q[Bishop[n, 0], 1]*Q[Bishop[n, 1], 1];
    Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jun 15 2017, translated from Andrew Howroyd's PARI code *)
  • PARI
    \\ Needs memoization - see note on algorithm for a faster version.
    M(sig,n,k,d,x)={if(n==0,k==0, if(k>0,k*x*M(sig,n-1,k-1,d,x),0) + if(kd,(sig[n]-d)*x*M(sig,n-1,k,d+1,x),0) + if(k+sig[n]-dAndrew Howroyd, Jun 05 2017

Formula

Conjectured to be a(n) = O(n^(n-1)).
a(n) = A290594(n) * A290613(n) for n > 1. - Andrew Howroyd, Aug 09 2017

Extensions

a(10)-a(11) from Andrew Howroyd, May 21 2017
Terms a(12) and beyond from Andrew Howroyd, Jun 05 2017

A288183 Triangle read by rows: T(n,k) = number of arrangements of k non-attacking bishops on the black squares of an n X n board with every square controlled by at least one bishop.

Original entry on oeis.org

2, 1, 4, 0, 4, 4, 0, 0, 22, 8, 0, 0, 16, 64, 8, 0, 0, 6, 128, 228, 16, 0, 0, 0, 72, 784, 528, 16, 0, 0, 0, 0, 1056, 4352, 1688, 32, 0, 0, 0, 0, 432, 9072, 18336, 3584, 32, 0, 0, 0, 0, 120, 7776, 76488, 87168, 11024, 64, 0, 0, 0, 0, 0, 2880, 109152, 484416, 313856, 22592, 64
Offset: 2

Views

Author

Andrew Howroyd, Jun 06 2017

Keywords

Comments

See A146304 for algorithm and PARI code to produce this sequence.
Equivalently, the coefficients of the maximal independent set polynomials on the n X n black bishop graph.
The product of the first nonzero term in each row of this sequence and that of A288182 give A122749.

Examples

			Triangle begins:
  2;
  1, 4;
  0, 4,  4;
  0, 0, 22,   8;
  0, 0, 16,  64,    8;
  0, 0,  6, 128,  228,   16;
  0, 0,  0,  72,  784,  528,    16;
  0, 0,  0,   0, 1056, 4352,  1688,    32;
  0, 0,  0,   0,  432, 9072, 18336,  3584,    32;
  0, 0,  0,   0,  120, 7776, 76488, 87168, 11024,  64;
  ...
The first term is T(2,1) = 2.
		

Crossrefs

Row sums are A290594.

A290613 Number of maximal independent vertex sets (and minimal vertex covers) in the n X n white bishop graph.

Original entry on oeis.org

2, 2, 8, 22, 88, 296, 1400, 5728, 31456, 150896, 932960, 5115376, 35000320, 214949120, 1609079552, 10909768192, 88532931328, 655461278720, 5721984568832, 45854239383040, 427904524628992, 3685075352873984, 36567439575256064, 336404621367433216
Offset: 2

Views

Author

Eric W. Weisstein, Aug 07 2017

Keywords

Comments

See A146304 for algorithm and PARI code to produce this sequence. - Andrew Howroyd, Aug 09 2017

Crossrefs

Row sums of A288182.

Extensions

Terms a(12) and beyond from Andrew Howroyd, Aug 09 2017

A274106 Triangle read by rows: T(n,k) = total number of configurations of k nonattacking bishops on the white squares of an n X n chessboard (0 <= k <= n-1+[n=0]).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 2, 1, 8, 14, 4, 1, 12, 38, 32, 4, 1, 18, 98, 184, 100, 8, 1, 24, 188, 576, 652, 208, 8, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2016

Keywords

Comments

From Eder G. Santos, Dec 16 2024: (Start)
The sequence counts every possible nonattacking configuration of k bishops on the white squares of an n X n chess board.
It is assumed that the n X n chess board has a black square in the upper left corner.
(End)

Examples

			Triangle begins:
  1;
  1;
  1,  2;
  1,  4,    2;
  1,  8,   14,     4;
  1, 12,   38,    32,     4;
  1, 18,   98,   184,   100,      8;
  1, 24,  188,   576,   652,    208,      8;
  1, 32,  356,  1704,  3532,   2816,    632,     16;
  1, 40,  580,  3840, 12052,  16944,   9080,   1280,     16;
  1, 50,  940,  8480, 38932,  89256,  93800,  37600,   3856,   32;
  1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32;
  ...
From _Eder G. Santos_, Dec 16 2024: (Start)
For example, for n = 3, k = 2, the T(3,2) = 2 nonattacking configurations are:
  +---+---+---+   +---+---+---+
  |   | B |   |   |   |   |   |
  +---+---+---+   +---+---+---+
  |   |   |   | , | B |   | B |
  +---+---+---+   +---+---+---+
  |   | B |   |   |   |   |   |
  +---+---+---+   +---+---+---+
(End)
		

Crossrefs

Columns k=0-1 give: A000012, A007590.
Alternate rows give A088960.
Row sums are A216078(n+1).
T(2n,n) gives A191236.
T(2n+1,n) gives A217900(n+1).
T(n+1,n) gives A060546.
Cf. A274105 (black squares), A288182, A201862, A002465.

Programs

  • Maple
    with(combinat): with(gfun):
    T := n -> add(stirling2(n+1,n+1-k)*x^k, k=0..n):
    # bishops on white squares
    bish := proc(n) local m,k,i,j,t1,t2; global T;
        if n=0 then return [1] fi;
        if (n mod 2) = 0 then m:=n/2;
            t1:=add(binomial(m,k)*T(2*m-1-k)*x^k, k=0..m);
        else
            m:=(n-1)/2;
            t1:=add(binomial(m,k)*T(2*m-k)*x^k, k=0..m+1);
        fi;
        seriestolist(series(t1,x,2*n+1));
    end:
    for n from 0 to 12 do lprint(bish(n)); od:
  • Mathematica
    T[n_] := Sum[StirlingS2[n+1, n+1-k]*x^k, {k, 0, n}];
    bish[n_] := Module[{m, t1, t2}, If[Mod[n, 2] == 0,
       m = n/2;     t1 = Sum[Binomial[m, k]*T[2*m-1-k]*x^k, {k, 0, m}],
       m = (n-1)/2; t1 = Sum[Binomial[m, k]*T[2*m - k]*x^k, {k, 0, m+1}]];
    CoefficientList[t1 + O[x]^(2*n+1), x]];
    Table[bish[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 25 2022, after Maple code *)
  • SageMath
    def stirling2_negativek(n, k):
      if k < 0: return 0
      else: return stirling_number2(n, k)
    print([sum([binomial(floor(n/2), j)*stirling2_negativek(n-j, n-k) for j in [0..k]]) for n in [0..10] for k in [0..n-1+kronecker_delta(n,0)]]) # Eder G. Santos, Dec 01 2024

Formula

From Eder G. Santos, Dec 01 2024: (Start)
T(n,k) = Sum_{j=0..k} binomial(floor(n/2),j) * Stirling2(n-j,n-k).
T(n,k) = T(n-1,k) + (n-k+1-A000035(n)) * T(n-1,k-1), T(n,0) = 1, T(0,k) = delta(k,0). (End)

Extensions

T(0,0) prepended by Eder G. Santos, Dec 01 2024
Showing 1-4 of 4 results.