cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288477 a(n) = (2^49 - 2)*n/3 + 247371098957.

Original entry on oeis.org

247371098957, 187897355572727, 375547340046497, 563197324520267, 750847308994037, 938497293467807, 1126147277941577, 1313797262415347, 1501447246889117, 1689097231362887, 1876747215836657, 2064397200310427, 2252047184784197, 2439697169257967
Offset: 0

Views

Author

Arkadiusz Wesolowski, Jun 09 2017

Keywords

Comments

For all n, the numbers a(n) and a(n) + 2 form a pair of consecutive SierpiƄski numbers.
Conjecture: a(0) + 1 = 247371098958 is the smallest nonnegative even number m such that for all k >= 1 the numbers m + 2^k + 1 and m + 2^k - 1 are composite.

Crossrefs

Cf. A076336.

Programs

  • GAP
    List([0..15],n->(2^49-2)*n/3+247371098957); # Muniru A Asiru, Oct 01 2018
  • Magma
    [(2^49-2)*n/3+247371098957: n in [0..13]];
    
  • Maple
    seq(coeff(series((247371098957+187402613374813*x)/(1-x)^2,x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 01 2018
  • Mathematica
    Table[(2^49 - 2) n/3 + 247371098957, {n, 0, 13}] (* or *)
    CoefficientList[Series[(247371098957 + 187402613374813 x)/(1 - x)^2, {x, 0, 13}], x] (* Michael De Vlieger, Jun 09 2017 *)
    LinearRecurrence[{2,-1},{247371098957,187897355572727},20] (* Harvey P. Dale, Feb 22 2025 *)
  • PARI
    a(n)=(2^49-2)*n/3+247371098957
    

Formula

G.f.: (247371098957 + 187402613374813*x)/(1 - x)^2.