A288477 a(n) = (2^49 - 2)*n/3 + 247371098957.
247371098957, 187897355572727, 375547340046497, 563197324520267, 750847308994037, 938497293467807, 1126147277941577, 1313797262415347, 1501447246889117, 1689097231362887, 1876747215836657, 2064397200310427, 2252047184784197, 2439697169257967
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..5000
- Carlos Rivera, Collection 20th - 019
- Wikipedia, Sierpinski number
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Cf. A076336.
Programs
-
GAP
List([0..15],n->(2^49-2)*n/3+247371098957); # Muniru A Asiru, Oct 01 2018
-
Magma
[(2^49-2)*n/3+247371098957: n in [0..13]];
-
Maple
seq(coeff(series((247371098957+187402613374813*x)/(1-x)^2,x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 01 2018
-
Mathematica
Table[(2^49 - 2) n/3 + 247371098957, {n, 0, 13}] (* or *) CoefficientList[Series[(247371098957 + 187402613374813 x)/(1 - x)^2, {x, 0, 13}], x] (* Michael De Vlieger, Jun 09 2017 *) LinearRecurrence[{2,-1},{247371098957,187897355572727},20] (* Harvey P. Dale, Feb 22 2025 *)
-
PARI
a(n)=(2^49-2)*n/3+247371098957
Formula
G.f.: (247371098957 + 187402613374813*x)/(1 - x)^2.
Comments