cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288604 a(n) = (n^9 - n)/10.

Original entry on oeis.org

0, 51, 1968, 26214, 195312, 1007769, 4035360, 13421772, 38742048, 99999999, 235794768, 515978034, 1060449936, 2066104677, 3844335936, 6871947672, 11858787648, 19835929035, 32268769776, 51199999998, 79428004656, 120726921777, 180115266144, 264180754020
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n^9-n)/10,{n,30}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,51,1968,26214,195312,1007769,4035360,13421772,38742048,99999999},30] (* Harvey P. Dale, Jun 11 2019 *)
  • PARI
    concat(0, Vec(3*x^2*(17 + 486*x + 2943*x^2 + 5204*x^3 + 2943*x^4 + 486*x^5 + 17*x^6) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Jun 11 2017
    
  • PARI
    a(n)=(n^9-n)/10 \\ Charles R Greathouse IV, Jun 11 2017

Formula

a(n) = (n^9 - n)/10 = A196289(n)/10.
G.f.: 3*x^2*(17 + 486*x + 2943*x^2 + 5204*x^3 + 2943*x^4 + 486*x^5 + 17*x^6) / (1 - x)^10. - Colin Barker, Jun 11 2017