A288638 Number A(n,k) of n-digit biquanimous strings using digits {0,1,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 10, 8, 1, 1, 1, 5, 19, 33, 16, 1, 1, 1, 6, 31, 92, 106, 32, 1, 1, 1, 7, 46, 201, 421, 333, 64, 1, 1, 1, 8, 64, 376, 1206, 1830, 1030, 128, 1, 1, 1, 9, 85, 633, 2841, 6751, 7687, 3153, 256, 1
Offset: 0
Examples
A(2,2) = 3: 00, 11, 22. A(3,2) = 10: 000, 011, 022, 101, 110, 112, 121, 202, 211, 220. A(3,3) = 19: 000, 011, 022, 033, 101, 110, 112, 121, 123, 132, 202, 211, 213, 220, 231, 303, 312, 321, 330. A(4,1) = 8: 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 4, 10, 19, 31, 46, 64, 85, ... 1, 8, 33, 92, 201, 376, 633, 988, ... 1, 16, 106, 421, 1206, 2841, 5801, 10696, ... 1, 32, 333, 1830, 6751, 19718, 48245, 104676, ... 1, 64, 1030, 7687, 36051, 128535, 372345, 939863, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..30, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k, s) option remember; `if`(n=0, `if`(s={}, 0, 1), add(b(n-1, k, select(y-> y<=(n-1)*k, map(x-> [abs(x-i), x+i][], s))), i=0..k)) end: A:= (n, k)-> b(n, k, {0}): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[n_, k_, s_] := b[n, k, s] = If[n == 0, If[s == {}, 0, 1], Sum[b[n-1, k, Select[Flatten[{Abs[#-i], #+i}& /@ s], # <= (n-1)*k&]], {i, 0, k}]]; A[n_, k_] := b[n, k, {0}]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 08 2018, from Maple *)
Comments