cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A065024 Number of n-digit biquanimous numbers in base 10 allowing leading zeros.

Original entry on oeis.org

1, 10, 136, 2056, 29246, 376414, 4366881, 47111408, 487875964, 4951921240, 49815780829, 499304300676, 4997363405880, 49989815235610, 499959437775564, 4999832460244272, 49999282163551040, 499996822399017380, 4999985554326500949, 49999932964605448756, 499999684083134646700, 4999998493912339729030, 49999992756990963293576, 499999964931001199898296, 4999999829289953917354596
Offset: 1

Views

Author

N. J. A. Sloane, Nov 03 2001

Keywords

Comments

A biquanimous number (A064544) is a number whose digits can be split into two groups with equal sums.

References

Crossrefs

Column k=9 of A288638.

Formula

G.f.: (2764800*x^35 -54743040*x^34 +535723776*x^33 -3484062592*x^32 +17047244288*x^31 -67056352000*x^30 +220043616032*x^29 -610136398384*x^28 +1428398369904*x^27 -2800237309450*x^26 +4555415187081*x^25 -6116515610358*x^24 +6790044899737*x^23 -6333177380214*x^22 +5196278284089*x^21 -4097957831766*x^20 +3395084470412*x^19 -2936902021347*x^18 +2431358755383*x^17 -1791957130479*x^16 +1141680065910*x^15 -626654334304*x^14 +298277671441*x^13 -124021600362*x^12 +45181016933*x^11 -14371192060*x^10 +3953830871*x^9 -928344574*x^8 +183129613*x^7 -29820446*x^6 +3925130*x^5 -406196*x^4 +31739*x^3 -1755*x^2 +61*x-1) / ((10*x-1) *(5*x-1) *(4*x-1)^2 *(3*x-1)^3 *(2*x-1)^8 *(x-1)^14). - Alois P. Heinz, Jun 12 2017
Limit_{n->oo} a(n)/10^n = 1/2. - Stefano Spezia, Sep 09 2023

A053156 Number of 2-element intersecting families (with not necessarily distinct sets) whose union is an n-element set.

Original entry on oeis.org

1, 3, 10, 33, 106, 333, 1030, 3153, 9586, 29013, 87550, 263673, 793066, 2383293, 7158070, 21490593, 64504546, 193579173, 580868590, 1742867913, 5229128026, 15688432653, 47067395110, 141206379633, 423627527506, 1270899359733
Offset: 1

Views

Author

Vladeta Jovovic and Goran Kilibarda, Feb 28 2000

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 3) x = y. - Ross La Haye, Jan 12 2008
From Paul Barry, Apr 27 2003: (Start)
With offset 0, this is a(n) = (3*3^n - 2*2^n + 1)/2.
G.f. (1-3*x+3*x^2)/((1-x)*(1-2*x)*(1-3*x)).
E.g.f. (3*exp(3*x) - 2*exp(2*x) + exp(x))/2.
Binomial transform of A083329.
Second binomial transform of A040001. (End)

Crossrefs

Cf. A036239.
Column k=2 of A288638.
Third column of A294201.

Programs

  • Magma
    [(3^n-2^n+1)/2: n in [1..30]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A053156:=n->(3^n - 2^n + 1)/2: seq(A053156(n), n=1..40); # Wesley Ivan Hurt, Oct 06 2017
  • Mathematica
    LinearRecurrence[{6,-11,6}, {1, 3, 10}, 50] (* or *) Table[(3^n - 2^n + 1)/2, {n,1,50}] (* G. C. Greubel, Oct 06 2017 *)
  • PARI
    a(n) = (3^n-2^n+1)/2; \\ Michel Marcus, Nov 30 2015
    

Formula

a(n) = (3^n - 2^n + 1)/2.
a(n) = StirlingS2(n+2,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 12 2008
From Colin Barker, Jul 29 2012: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n > 3.
G.f.: x*(1-3*x+3*x^2)/((1-x)*(1-2*x)*(1-3*x)). (End)

A288687 Number of n-digit biquanimous strings using digits {0,1,2,3}.

Original entry on oeis.org

1, 1, 4, 19, 92, 421, 1830, 7687, 31624, 128521, 518666, 2084875, 8361996, 33497101, 134094862, 536608783, 2146926608, 8588754961, 34357248018, 137433710611, 549744803860, 2199000186901, 8796044787734, 35184271425559, 140737278640152, 562949517213721
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2017

Keywords

Comments

A biquanimous string is a string whose digits can be split into two groups with equal sums.

Crossrefs

Column k=3 of A288638.

Programs

  • Mathematica
    LinearRecurrence[{10,-37,64,-52,16},{1,1,4,19,92,421},30] (* Harvey P. Dale, Jul 29 2017 *)
  • PARI
    Vec((1 - 9*x + 31*x^2 - 48*x^3 + 38*x^4 - 16*x^5) / ((1 - x)^2*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Dec 16 2017

Formula

G.f.: (1 - 9*x + 31*x^2 - 48*x^3 + 38*x^4 - 16*x^5) / ((1 - x)^2*(1 - 2*x)^2*(1 - 4*x)).
a(n) = 1 + A064671(n) for n > 0.
From Colin Barker, Dec 16 2017: (Start)
a(n) = (2^(2*n-1) + n - 2^(n-1)*(1+n)).
a(n) = 10*a(n-1) - 37*a(n-2) + 64*a(n-3) - 52*a(n-4) + 16*a(n-5) for n>5.
(End)

A288688 Number of n-digit biquanimous strings using digits {0,1,...,4}.

Original entry on oeis.org

1, 1, 5, 31, 201, 1206, 6751, 36051, 187025, 954136, 4822527, 24251877, 121631329, 609151986, 3048441935, 15249510871, 76267672545, 381394509228, 1907131201327, 9536109476745, 47681856564305, 238413094649734, 1192076649237855, 5960416195898811
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2017

Keywords

Comments

A biquanimous string is a string whose digits can be split into two groups with equal sums.

Crossrefs

Column k=4 of A288638.

Formula

G.f.: -(60*x^10 -422*x^9 +1044*x^8 -1855*x^7 +2394*x^6 -2122*x^5 +1273*x^4 -504*x^3 +124*x^2 -17*x +1) / ((5*x-1) *(3*x-1) *(2*x-1)^3 *(x-1)^4).

A288689 Number of n-digit biquanimous strings using digits {0,1,...,5}.

Original entry on oeis.org

1, 1, 6, 46, 376, 2841, 19718, 128535, 805848, 4942711, 29970542, 180700389, 1086570460, 6525662885, 39170135870, 235062159691, 1410477973872, 8463133736523, 50779476069198, 304678570340665, 1828075815690100, 10968466276145161, 65810827526263678
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2017

Keywords

Comments

A biquanimous string is a string whose digits can be split into two groups with equal sums.

Crossrefs

Column k=5 of A288638.

Programs

  • Mathematica
    CoefficientList[Series[(144x^14-1224x^13+4976x^12-11002x^11+18115x^10-25255x^9+30319x^8-29516x^7+21747x^6-11691x^5+4506x^4-1212x^3+214x^2-22x+1)/((6x-1)(3x-1)(2x-1)^4(x-1)^6),{x,0,40}],x] (* or *) LinearRecurrence[{23,-231,1351,-5153,13557,-25301,33829,-32226,21368,-9376,2448,-288},{1,1,6,46,376,2841,19718,128535,805848,4942711,29970542,180700389,1086570460,6525662885,39170135870},40] (* Harvey P. Dale, Aug 18 2025 *)

Formula

G.f.: (144*x^14 -1224*x^13 +4976*x^12 -11002*x^11 +18115*x^10 -25255*x^9 +30319*x^8 -29516*x^7 +21747*x^6 -11691*x^5 +4506*x^4 -1212*x^3 +214*x^2 -22*x +1) / ((6*x-1) *(3*x-1) *(2*x-1)^4 *(x-1)^6).

A288690 Number of n-digit biquanimous strings using digits {0,1,...,6}.

Original entry on oeis.org

1, 1, 7, 64, 633, 5801, 48245, 372345, 2743793, 19706380, 139666975, 983424751, 6902981425, 48383824035, 338898209049, 2373012819041, 16613639684833, 116304663546706, 814166474511867, 5699292259116239, 39895529322328145, 279270568611716769, 1954901225698086549
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2017

Keywords

Comments

A biquanimous string is a string whose digits can be split into two groups with equal sums.

Crossrefs

Column k=6 of A288638.

Formula

G.f.: -(4032*x^20 -50640*x^19 +300760*x^18 -1131816*x^17 +2828844*x^16 -5169218*x^15 +7372355*x^14 -8685305*x^13 +8984178*x^12 -8471674*x^11 +7172188*x^10 -5192457*x^9 +3073627*x^8 -1446472*x^7 +532167*x^6 -150791*x^5 +32203*x^4 -4997*x^3 +529*x^2 -34*x +1) / ((7*x-1) *(4*x-1) *(3*x-1)^2 *(2*x-1)^5 *(x-1)^8).

A288691 Number of n-digit biquanimous strings using digits {0,1,...,7}.

Original entry on oeis.org

1, 1, 8, 85, 988, 10696, 104676, 939863, 7980376, 65679175, 532115106, 4279710436, 34311898336, 274729437763, 2198561705222, 17590732383423, 140732804110800, 1125884352801489, 9007145852828686, 72057404552774828, 576460059887430848, 4611683426113781209
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2017

Keywords

Comments

A biquanimous string is a string whose digits can be split into two groups with equal sums.

Crossrefs

Column k=7 of A288638.

Formula

G.f.: (9216*x^24 -129408*x^23+881824*x^22 -3910528*x^21 +12761816*x^20 -31636760*x^19 +62309010*x^18 -101187417*x^17 +139600728*x^16 -166854657*x^15 +174047204*x^14 -158809357*x^13 +127270681*x^12 -89880736*x^11 +55637484*x^10 -29668152*x^9 +13297571*x^8 -4887342*x^7 +1441132*x^6 -333899*x^5 +59267*x^4 -7757*x^3 +702*x^2 -39*x +1) / ((8*x-1) *(4*x-1) *(3*x-1)^2 *(2*x-1)^6 *(x-1)^10).

A288692 Number of n-digit biquanimous strings using digits {0,1,...,8}.

Original entry on oeis.org

1, 1, 9, 109, 1457, 18231, 205837, 2112384, 20341201, 189013501, 1725377947, 15622028115, 140950202021, 1269874954518, 11433967343409, 102926130336136, 926421241593985, 8338171770377449, 75045297684511343, 675415983886759045, 6078784024809901485
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2017

Keywords

Comments

A biquanimous string is a string whose digits can be split into two groups with equal sums.

Crossrefs

Column k=8 of A288638.

Formula

G.f.: -(77760*x^29 -1384992*x^28 +12134448*x^27 -69723432*x^26 +294884564*x^25 -975139270*x^24 +2569875380*x^23 -5484438559*x^22 +9604318227*x^21 -13997308104*x^20 +17318565226*x^19 -18674789778*x^18 +18024625668*x^17 -15836546206*x^16 +12680214123*x^15 -9166750277*x^14 +5925087725*x^13 -3404858524*x^12 +1731743202*x^11 -773011544*x^10 +298459228*x^9 -97814317*x^8 +26669775*x^7 -5929660*x^6 +1052200*x^5 -145030*x^4 +14922*x^3 -1074*x^2 +48*x -1) / ((9*x-1) *(5*x-1) *(3*x-1)^3 *(2*x-1)^7 *(x-1)^12).

A288693 Number of n-digit biquanimous strings using digits {0,1,...,n}.

Original entry on oeis.org

1, 1, 3, 19, 201, 2841, 48245, 939863, 20341201, 487875964, 12830282835, 370205055144, 11629998323185, 396693714869323, 14593231979817751, 576427808563042857
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2017

Keywords

Comments

A biquanimous string is a string whose digits can be split into two groups with equal sums.

Examples

			a(2) = 3: 00, 11, 22.
a(3) = 19: 000, 011, 022, 033, 101, 110, 112, 121, 123, 132, 202, 211, 213, 220, 231, 303, 312, 321, 330.
		

Crossrefs

Main diagonal of A288638.

Programs

  • Maple
    b:= proc(n, k, s) option remember;
          `if`(n=0, `if`(s={}, 0, 1), add(b(n-1, k, select(y->
           y<=(n-1)*k, map(x-> [abs(x-i), x+i][], s))), i=0..k))
        end:
    a:= n-> b(n$2, {0}):
    seq(a(n), n=0..10);
  • Mathematica
    b[n_, k_, s_] := b[n, k, s] = If[n == 0, If[s == {}, 0, 1], Sum[b[n-1, k, Select[Flatten[{Abs[#-i], #+i}& /@ s], # <= (n-1)*k&]], {i, 0, k}]];
    a[n_] := b[n, n, {0}];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 10}] (* Jean-François Alcover, May 17 2022, after Alois P. Heinz *)
Showing 1-9 of 9 results.