A065024
Number of n-digit biquanimous numbers in base 10 allowing leading zeros.
Original entry on oeis.org
1, 10, 136, 2056, 29246, 376414, 4366881, 47111408, 487875964, 4951921240, 49815780829, 499304300676, 4997363405880, 49989815235610, 499959437775564, 4999832460244272, 49999282163551040, 499996822399017380, 4999985554326500949, 49999932964605448756, 499999684083134646700, 4999998493912339729030, 49999992756990963293576, 499999964931001199898296, 4999999829289953917354596
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (62, -1807, 33062, -427564, 4169600, -31932484, 197416064, -1004816182, 4272066348, -15337434186, 46879240956, -122734147260, 276448013616, -537280650948, 902485024560, -1310712845937, 1644560278758, -1778909274239, 1653055768558, -1312795678832, 884596325632, -500792236832, 235030416448, -89771423744, 27185833984, -6278031104, 1038269952, -109486080, 5529600).
A053156
Number of 2-element intersecting families (with not necessarily distinct sets) whose union is an n-element set.
Original entry on oeis.org
1, 3, 10, 33, 106, 333, 1030, 3153, 9586, 29013, 87550, 263673, 793066, 2383293, 7158070, 21490593, 64504546, 193579173, 580868590, 1742867913, 5229128026, 15688432653, 47067395110, 141206379633, 423627527506, 1270899359733
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, in Russian, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, English translation, in Discrete Mathematics and Applications, 9, (1999), no. 6.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
-
[(3^n-2^n+1)/2: n in [1..30]]; // G. C. Greubel, Oct 06 2017
-
A053156:=n->(3^n - 2^n + 1)/2: seq(A053156(n), n=1..40); # Wesley Ivan Hurt, Oct 06 2017
-
LinearRecurrence[{6,-11,6}, {1, 3, 10}, 50] (* or *) Table[(3^n - 2^n + 1)/2, {n,1,50}] (* G. C. Greubel, Oct 06 2017 *)
-
a(n) = (3^n-2^n+1)/2; \\ Michel Marcus, Nov 30 2015
A288687
Number of n-digit biquanimous strings using digits {0,1,2,3}.
Original entry on oeis.org
1, 1, 4, 19, 92, 421, 1830, 7687, 31624, 128521, 518666, 2084875, 8361996, 33497101, 134094862, 536608783, 2146926608, 8588754961, 34357248018, 137433710611, 549744803860, 2199000186901, 8796044787734, 35184271425559, 140737278640152, 562949517213721
Offset: 0
-
LinearRecurrence[{10,-37,64,-52,16},{1,1,4,19,92,421},30] (* Harvey P. Dale, Jul 29 2017 *)
-
Vec((1 - 9*x + 31*x^2 - 48*x^3 + 38*x^4 - 16*x^5) / ((1 - x)^2*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Dec 16 2017
A288688
Number of n-digit biquanimous strings using digits {0,1,...,4}.
Original entry on oeis.org
1, 1, 5, 31, 201, 1206, 6751, 36051, 187025, 954136, 4822527, 24251877, 121631329, 609151986, 3048441935, 15249510871, 76267672545, 381394509228, 1907131201327, 9536109476745, 47681856564305, 238413094649734, 1192076649237855, 5960416195898811
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (18, -137, 582, -1527, 2574, -2795, 1890, -724, 120).
A288689
Number of n-digit biquanimous strings using digits {0,1,...,5}.
Original entry on oeis.org
1, 1, 6, 46, 376, 2841, 19718, 128535, 805848, 4942711, 29970542, 180700389, 1086570460, 6525662885, 39170135870, 235062159691, 1410477973872, 8463133736523, 50779476069198, 304678570340665, 1828075815690100, 10968466276145161, 65810827526263678
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (23, -231, 1351, -5153, 13557, -25301, 33829, -32226, 21368, -9376, 2448, -288).
-
CoefficientList[Series[(144x^14-1224x^13+4976x^12-11002x^11+18115x^10-25255x^9+30319x^8-29516x^7+21747x^6-11691x^5+4506x^4-1212x^3+214x^2-22x+1)/((6x-1)(3x-1)(2x-1)^4(x-1)^6),{x,0,40}],x] (* or *) LinearRecurrence[{23,-231,1351,-5153,13557,-25301,33829,-32226,21368,-9376,2448,-288},{1,1,6,46,376,2841,19718,128535,805848,4942711,29970542,180700389,1086570460,6525662885,39170135870},40] (* Harvey P. Dale, Aug 18 2025 *)
A288690
Number of n-digit biquanimous strings using digits {0,1,...,6}.
Original entry on oeis.org
1, 1, 7, 64, 633, 5801, 48245, 372345, 2743793, 19706380, 139666975, 983424751, 6902981425, 48383824035, 338898209049, 2373012819041, 16613639684833, 116304663546706, 814166474511867, 5699292259116239, 39895529322328145, 279270568611716769, 1954901225698086549
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (35, -557, 5373, -35284, 167758, -599018, 1643178, -3510009, 5878447, -7726457, 7932089, -6287970, 3771376, -1654048, 500240, -93216, 8064).
A288691
Number of n-digit biquanimous strings using digits {0,1,...,7}.
Original entry on oeis.org
1, 1, 8, 85, 988, 10696, 104676, 939863, 7980376, 65679175, 532115106, 4279710436, 34311898336, 274729437763, 2198561705222, 17590732383423, 140732804110800, 1125884352801489, 9007145852828686, 72057404552774828, 576460059887430848, 4611683426113781209
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (40, -734, 8256, -64063, 365480, -1593840, 5449456, -14855999, 32647032, -58206694, 84416480, -99491505, 94840120, -72455660, 43708272, -20343280, 7044608, -1708352, 258816, -18432).
A288692
Number of n-digit biquanimous strings using digits {0,1,...,8}.
Original entry on oeis.org
1, 1, 9, 109, 1457, 18231, 205837, 2112384, 20341201, 189013501, 1725377947, 15622028115, 140950202021, 1269874954518, 11433967343409, 102926130336136, 926421241593985, 8338171770377449, 75045297684511343, 675415983886759045, 6078784024809901485
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (49, -1114, 15704, -154592, 1133720, -6448172, 29219972, -107498498, 325391618, -818066864, 1719218324, -3031985264, 4494756128, -5598534740, 5843651372, -5085390293, 3660194213, -2153194198, 1017730084, -376961752, 105342192, -20876832, 2614464, -155520).
A288693
Number of n-digit biquanimous strings using digits {0,1,...,n}.
Original entry on oeis.org
1, 1, 3, 19, 201, 2841, 48245, 939863, 20341201, 487875964, 12830282835, 370205055144, 11629998323185, 396693714869323, 14593231979817751, 576427808563042857
Offset: 0
a(2) = 3: 00, 11, 22.
a(3) = 19: 000, 011, 022, 033, 101, 110, 112, 121, 123, 132, 202, 211, 213, 220, 231, 303, 312, 321, 330.
-
b:= proc(n, k, s) option remember;
`if`(n=0, `if`(s={}, 0, 1), add(b(n-1, k, select(y->
y<=(n-1)*k, map(x-> [abs(x-i), x+i][], s))), i=0..k))
end:
a:= n-> b(n$2, {0}):
seq(a(n), n=0..10);
-
b[n_, k_, s_] := b[n, k, s] = If[n == 0, If[s == {}, 0, 1], Sum[b[n-1, k, Select[Flatten[{Abs[#-i], #+i}& /@ s], # <= (n-1)*k&]], {i, 0, k}]];
a[n_] := b[n, n, {0}];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 10}] (* Jean-François Alcover, May 17 2022, after Alois P. Heinz *)
Showing 1-9 of 9 results.
Comments