cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288787 Number of blocks of size >= five in all set partitions of n.

Original entry on oeis.org

1, 7, 50, 345, 2392, 16955, 123707, 932010, 7260709, 58509323, 487593202, 4199841037, 37361858716, 342989895895, 3246458915947, 31653980371254, 317654338317380, 3278058775976704, 34757921507150964, 378372365291381716, 4225533329681577846, 48375204740642752562
Offset: 5

Views

Author

Alois P. Heinz, Jun 15 2017

Keywords

Crossrefs

Column k=5 of A283424.
Cf. A000110.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    g:= proc(n, k) option remember; `if`(n g(n, 5):
    seq(a(n), n=5..30);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]];
    g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k + 1] + Binomial[n, k]*b[n - k]];
    a[n_] := g[n, 5];
    Table[a[n], {n, 5, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)

Formula

a(n) = Bell(n+1) - Sum_{j=0..4} binomial(n,j) * Bell(n-j).
a(n) = Sum_{j=0..n-5} binomial(n,j) * Bell(j).
E.g.f.: (exp(x) - Sum_{k=0..4} x^k/k!) * exp(exp(x) - 1). - Ilya Gutkovskiy, Jun 26 2022