A288877
Coefficients in expansion of E_4/E_2.
Original entry on oeis.org
1, 264, 8568, 231456, 6214872, 166719024, 4472485344, 119980322880, 3218631807384, 86344077536616, 2316294684846288, 62137684699355232, 1666926011246777184, 44717506621139113584, 1199606572169515887552, 32181041313068138778816
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}])/(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 28 2017 *)
terms = 16; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[4]/Ei[2] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
A287933
Coefficients in expansion of 1/E_8.
Original entry on oeis.org
1, -480, 168480, -52199040, 15119446560, -4198347132480, 1132514464199040, -299116847254053120, 77742157641008378400, -19951615350261029163360, 5068304275307482667436480, -1276700988345016720650917760
Offset: 0
A289565
Coefficients in expansion of 1/E_2^(1/2).
Original entry on oeis.org
1, 12, 252, 5664, 133356, 3224952, 79387488, 1978996416, 49797787788, 1262193008556, 32177428972632, 824182154521056, 21193138994244960, 546767126418119352, 14146104826919725632, 366887630982365262144, 9535791498480146879436
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289635
Coefficients in expansion of -q*E'_2/E_2 where E_2 is the Eisenstein Series (A006352).
Original entry on oeis.org
24, 720, 19296, 517920, 13893264, 372707136, 9998360256, 268219317312, 7195339794744, 193024557070560, 5178140391612960, 138910500937231488, 3726458885094926160, 99967214347459657344, 2681753442755678231616
Offset: 1
a(1) = - A006352(1)*1 = 24,
a(2) = -(A006352(1)*a(1)) - A006352(2)*2 = 720,
a(3) = -(A006352(1)*a(2) + A006352(2)*a(1)) - A006352(3)*3 = 19296,
a(4) = -(A006352(1)*a(3) + A006352(2)*a(2) + A006352(3)*a(1)) - A006352(4)*4 = 517920.
-
nmax = 20; Rest[CoefficientList[Series[24*x*Sum[k*DivisorSigma[1, k]*x^(k-1), {k, 1, nmax}]/(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
A285836
Coefficients in expansion of 1/E_10.
Original entry on oeis.org
1, 264, 205128, 95104416, 54329698632, 28308006715824, 15339873507244704, 8172566140980183360, 4385988806258507934024, 2346434028637391065282536, 1257009611855633134427201328, 672999598306502464042506285792
Offset: 0
A287964
Coefficients in expansion of 1/E_14.
Original entry on oeis.org
1, 24, 197208, 47715936, 42451725912, 18015200386704, 10924205579505504, 5511557851517150400, 3039496830486964153944, 1604976096786795234999096, 865212805864755380070382608, 461861254217266216545148291872
Offset: 0
-
terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[1/Ei[14] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
Showing 1-6 of 6 results.