A289566
Coefficients in expansion of 1/E_4^(1/2).
Original entry on oeis.org
1, -120, 20520, -3934560, 793510440, -164694615120, 34824089129760, -7460017581785280, 1613575314347164200, -351613291994820018840, 77073167391611232305520, -16975579813113940564868640, 3753822590560913900129106720
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289567
Coefficients in expansion of 1/E_6^(1/2).
Original entry on oeis.org
1, 252, 103572, 46355904, 21754545876, 10493652271032, 5153897870227008, 2563741466120209536, 1287429765611338091988, 651251466581383330576956, 331360676706818772917367912, 169399388595923901462013678656
Offset: 0
E_6^(k/12):
A289570 (k=-18),
A000706 (k=-12), this sequence (k=-6),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A294976
Coefficients in expansion of (E_6/E_2^6)^(1/12).
Original entry on oeis.org
1, -30, -11340, -3912600, -1520905170, -636170644008, -278687199310200, -126000360658968000, -58290111778749466140, -27440829122946510954630, -13096614404248661886145848, -6320198941502349713305002120, -3077986352751848627729986859400
Offset: 0
-
terms = 13;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
(E6[x]/E2[x]^6)^(1/12) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
A289568
Coefficients in expansion of 1/E_10^(1/2).
Original entry on oeis.org
1, 132, 93852, 35163744, 18119136156, 8462089683432, 4234179302847648, 2096050696254014016, 1057219212439789539228, 534730176137991079392036, 272470142855167873443179352, 139363825115618499934478625696
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 264*Sum[DivisorSigma[9, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289569
Coefficients in expansion of 1/E_14^(1/2).
Original entry on oeis.org
1, 12, 98532, 22675584, 16099478436, 6580135809432, 3539736295913088, 1699883073000957696, 871767496424764386468, 438331617201642108107916, 224266585355757815798085192, 114622723650418140746841457536, 58945651172799536532104421386880
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[13, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A294978
Coefficients in expansion of (E_4/E_2^4)^(1/8).
Original entry on oeis.org
1, 42, -2268, 395304, -64600914, 11644170552, -2188350306072, 424652412357696, -84326944950450972, 17044476557469661986, -3493525880987663047128, 724189608821718233434296, -151528575864988356484968840, 31955212589107172812017247992
Offset: 0
-
terms = 14;
E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
(E4[x]/E2[x]^4)^(1/8) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
Showing 1-6 of 6 results.
Comments