A289565
Coefficients in expansion of 1/E_2^(1/2).
Original entry on oeis.org
1, 12, 252, 5664, 133356, 3224952, 79387488, 1978996416, 49797787788, 1262193008556, 32177428972632, 824182154521056, 21193138994244960, 546767126418119352, 14146104826919725632, 366887630982365262144, 9535791498480146879436
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289566
Coefficients in expansion of 1/E_4^(1/2).
Original entry on oeis.org
1, -120, 20520, -3934560, 793510440, -164694615120, 34824089129760, -7460017581785280, 1613575314347164200, -351613291994820018840, 77073167391611232305520, -16975579813113940564868640, 3753822590560913900129106720
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289568
Coefficients in expansion of 1/E_10^(1/2).
Original entry on oeis.org
1, 132, 93852, 35163744, 18119136156, 8462089683432, 4234179302847648, 2096050696254014016, 1057219212439789539228, 534730176137991079392036, 272470142855167873443179352, 139363825115618499934478625696
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 264*Sum[DivisorSigma[9, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289569
Coefficients in expansion of 1/E_14^(1/2).
Original entry on oeis.org
1, 12, 98532, 22675584, 16099478436, 6580135809432, 3539736295913088, 1699883073000957696, 871767496424764386468, 438331617201642108107916, 224266585355757815798085192, 114622723650418140746841457536, 58945651172799536532104421386880
Offset: 0
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[13, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289570
Coefficients in expansion of 1/E_6^(3/2).
Original entry on oeis.org
1, 756, 501228, 311671584, 187266950892, 110121960638088, 63808586297102304, 36578013578688141504, 20797655630223547290348, 11749541312124028845092052, 6603568491137827506152966712, 3695593478842608407829235523808
Offset: 0
E_6^(k/12): this sequence (k=-18),
A000706 (k=-12),
A289567 (k=-6),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-3/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289540
Coefficients in expansion of 1/E_6^(1/12).
Original entry on oeis.org
1, 42, 12852, 4780104, 1974512526, 863778376440, 391960077239304, 182430901827757632, 86505196617272556900, 41607881477457256661154, 20239469012268054187498440, 9935363620927698868439915544, 4914082482014906612773260362232
Offset: 0
E_6^(k/12):
A289570 (k=-18),
A000706 (k=-12),
A289567 (k=-6), this sequence (k=-1),
A109817 (k=1),
A289325 (k=2),
A289326 (k=3),
A289327 (k=4),
A289328 (k=5),
A289293 (k=6),
A289345 (k=7),
A289346 (k=8),
A289347 (k=9),
A289348 (k=10),
A289349 (k=11).
-
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 26 2017 *)
Showing 1-6 of 6 results.