cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A289567 Coefficients in expansion of 1/E_6^(1/2).

Original entry on oeis.org

1, 252, 103572, 46355904, 21754545876, 10493652271032, 5153897870227008, 2563741466120209536, 1287429765611338091988, 651251466581383330576956, 331360676706818772917367912, 169399388595923901462013678656
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2017

Keywords

Crossrefs

1/E_k^(1/2): A289565 (k=2), A289566 (k=4), this sequence (k=6), A001943 (k=8), A289568 (k=10), A289569 (k=14).
E_6^(k/12): A289570 (k=-18), A000706 (k=-12), this sequence (k=-6), A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), A289349 (k=11).
Cf. A000706 (1/E_6), A288851, A289293 (E_6^(1/2)).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(-A288851(n)/2).
a(n) ~ c * exp(2*Pi*n) / sqrt(n), where c = 2^(5/2) * Gamma(3/4)^8 / (3*Pi^(5/2)) = 0.5480868931611627439175185425300450785609564636925943866686455998197... - Vaclav Kotesovec, Jul 09 2017, updated Mar 03 2018

A289540 Coefficients in expansion of 1/E_6^(1/12).

Original entry on oeis.org

1, 42, 12852, 4780104, 1974512526, 863778376440, 391960077239304, 182430901827757632, 86505196617272556900, 41607881477457256661154, 20239469012268054187498440, 9935363620927698868439915544, 4914082482014906612773260362232
Offset: 0

Views

Author

Seiichi Manyama, Jul 15 2017

Keywords

Crossrefs

E_6^(k/12): A289570 (k=-18), A000706 (k=-12), A289567 (k=-6), this sequence (k=-1), A109817 (k=1), A289325 (k=2), A289326 (k=3), A289327 (k=4), A289328 (k=5), A289293 (k=6), A289345 (k=7), A289346 (k=8), A289347 (k=9), A289348 (k=10), A289349 (k=11).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/12), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 26 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(-A288851(n)/12).
a(n) ~ c * exp(2*Pi*n) / n^(11/12), where c = 2^(5/12) * Gamma(3/4)^(4/3) / (3^(1/6) * Pi^(1/3) * Gamma(1/12)) = 0.08654217651555778130817946575840803466... - Vaclav Kotesovec, Jul 26 2017, updated Mar 05 2018
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A299503(k)*a(n-k) for n > 0. - Seiichi Manyama, Feb 27 2018

A289571 Coefficients in expansion of q * Product_{n>=1} (1 - q^n)^24/E_6^(3/2).

Original entry on oeis.org

1, 732, 483336, 299831152, 179912034330, 105705360893664, 61212394149183536, 35074084087016521152, 19935701871161896669257, 11259521840932766778870360, 6326766973556024191050129528, 3540038281600931271753859693440
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2017

Keywords

Examples

			G.f.: q + 732*q^2 + 483336*q^3 + 299831152*q^4 + 179912034330*q^5 + ...
		

Crossrefs

Cf. A000594, A289570 (1/E_6^(3/2)).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 - x^k)^24, {k, 1, nmax}] / (1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(3/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)

Formula

Sum_{n>=1} a(n)/n^2 * exp(-2*Pi*n) = (Pi - log(5+2*sqrt(6)))/(72*sqrt(6)).
a(n) ~ c * exp(2*Pi*n) * sqrt(n), where c = sqrt(2)/(432*sqrt(Pi)) = 0.001846955001858484620092342870066582724425271440578401192897804766993... - Vaclav Kotesovec, Jul 09 2017, updated Mar 05 2018
Showing 1-3 of 3 results.