cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A294626 a(n) = (1/(24*n)) * Sum_{d|n} A008683(n/d) * (A288877(d) - A288261(d)).

Original entry on oeis.org

42, -3171, 515242, -88552695, 16361485098, -3146078130083, 622295456184618, -125653124401054383, 25774485201611434666, -5353054527354475135971, 1122995842490069166600618, -237552033781060445940477047, 50601782105864798623718932266
Offset: 1

Views

Author

Seiichi Manyama, Feb 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 13;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    a[n_] := (1/(24 n))*Sum[MoebiusMu[n/d]*SeriesCoefficient[E4[x]/E2[x] - E6[x]/E4[x], {x, 0, d}], {d, Divisors[n]}];
    Array[a, terms] (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) ~ -(-1)^n * exp(Pi*sqrt(3)*n) / (8*n). - Vaclav Kotesovec, Jun 03 2018

A294975 a(n) = (1/(24*n)) * Sum_{d|n} A008683(n/d) * (A288840(d) - A288877(d)).

Original entry on oeis.org

30, 11775, 4261790, 1712983575, 733856931102, 327479190724415, 150310619778297630, 70428822637214055855, 33523597190372498303390, 16156445902947621421555071, 7865129058155113639991368350, 3860735065245244345161225213335
Offset: 1

Views

Author

Seiichi Manyama, Feb 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 12;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}];
    a[n_] := (1/(24 n))*Sum[MoebiusMu[n/d]*SeriesCoefficient[E8[x]/E6[x] - E4[x]/E2[x], {x, 0, d}], {d, Divisors[n]}];
    Array[a, terms] (* Jean-François Alcover, Feb 26 2018 *)

Formula

a(n) ~ exp(2*Pi*n) / (12*n). - Vaclav Kotesovec, Jun 03 2018

A288261 Coefficients in expansion of E_6/E_4.

Original entry on oeis.org

1, -744, 159768, -36866976, 8507424792, -1963211493744, 453039686271072, -104545516658693952, 24125403112135458840, -5567288717204029449672, 1284733088879405339418768, -296470902355240575283208928, 68414985730612787485819011168
Offset: 0

Views

Author

Seiichi Manyama, Jun 17 2017

Keywords

Comments

Also coefficients in expansion of E_10/E_8. - Seiichi Manyama, Jun 20 2017

Examples

			G.f.: 1 - 744*q + 159768*q^2 - 36866976*q^3 + 8507424792*q^4 - 1963211493744*q^5 + 453039686271072*q^6 + ...
From _Seiichi Manyama_, Jun 27 2017: (Start)
a(0) = j_0((-1+sqrt(3)*i)/2) = 1,_
a(1) = j_1((-1+sqrt(3)*i)/2) = -744 + 0^1 = -744,
a(2) = j_2((-1+sqrt(3)*i)/2) = 159768 - 1488*0^1 + 0^2 = 159768. (End)
		

Crossrefs

Cf. A004009 (E_4), A110163, A013973 (E_6).
E_{k+2}/E_k: A288877 (k=2), this sequence (k=4, 8), A288840 (k=6).
Cf. A000521 (j), A035230 (-q*j'), A066395 (1/j), A289141.

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}])/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 28 2017 *)
    terms = 13; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[6]/Ei[4] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
    a[ n_] := With[{j = Series[1728 KleinInvariantJ[ Log[ Series[q, {q, 0, n + 1}]]/(2 Pi I)], {q, 0, n}]}, SeriesCoefficient[ -q D[j, q] / j, {q, 0, n}]]; (* Michael Somos, Aug 15 2018 *)

Formula

From Seiichi Manyama, Jun 27 2017: (Start)
Let j_0 = 1 and j_1 = j - 744. Define j_m by j_m = j1 | T_0(m), where T_0(m) = mT_{m, 0} is the normalized m-th weight zero Hecke operator. a(n) = j_n((-1+sqrt(3)*i)/2).
G.f.: Sum_{n >= 0} j_n((-1+sqrt(3)*i)/2)*q^n. (End)
a(n) ~ (-1)^n * 3 * exp(Pi*sqrt(3)*n). - Vaclav Kotesovec, Jun 28 2017
G.f.: -q*j'/j where j is the elliptic modular invariant (A000521). - Seiichi Manyama, Jul 12 2017

A288968 Exponents a(1), a(2), ... such that E_2, 1 - 24*q - 72*q^2 - ... (A006352) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .

Original entry on oeis.org

24, 348, 6424, 129300, 2778648, 62114524, 1428337176, 33527349924, 799482197272, 19302454317660, 470740035601176, 11575875047000596, 286650683468840472, 7140515309818664028, 178783562850377621272, 4496350112540599930692
Offset: 1

Views

Author

Seiichi Manyama, Jun 20 2017

Keywords

Crossrefs

Cf. this sequence (k=2), A110163 (k=4), A288851 (k=6), A288471 (k=8), A289024 (k=10), A288990/A288989 (k=12), A289029 (k=14).
Cf. A006352 (E_2), A008683, A288877 (E_4/E_2), A289635.

Formula

a(n) = 2 + (1/(12*n)) * Sum_{d|n} A008683(n/d) * A288877(d).
a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A289635(d).
a(n) ~ 1 / (n * r^(2*n)), where r = A057823. - Vaclav Kotesovec, Mar 08 2018

A211342 Decimal expansion of q between 0 and 1 maximizing Dedekind eta function eta(q) = q^(1/24) * Product_{n>=1} (1 - q^n).

Original entry on oeis.org

0, 3, 7, 2, 7, 6, 8, 1, 0, 2, 9, 6, 4, 5, 1, 6, 5, 8, 1, 5, 0, 9, 8, 0, 7, 8, 5, 6, 5, 1, 6, 4, 4, 6, 1, 8, 0, 3, 6, 2, 8, 2, 3, 7, 9, 4, 8, 2, 7, 8, 3, 0, 0, 6, 7, 0, 4, 1, 0, 2, 2, 1, 3, 4, 7, 7, 5, 1, 3, 9, 2, 9, 1, 0, 2, 0, 3, 6, 7, 5, 5, 3, 2, 3, 0, 0, 3, 4, 3, 1, 4, 7, 0, 6, 5, 8, 2, 9, 8, 9, 0
Offset: 0

Views

Author

Jean-François Alcover, Feb 05 2013

Keywords

Examples

			0.0372768102964516581509807856516446180362823794827830067...
		

Crossrefs

Programs

  • Mathematica
    q /. Last @ FindMaximum[ DedekindEta[ -I*Log[q]/(2*Pi)], {q, 1/25}, WorkingPrecision -> 200] // RealDigits[#][[1]][[1 ;; 100]]& // Prepend[#, 0]&
    x /. FindRoot[24*Sum[DivisorSigma[1, k]*x^k, {k, 1, 1000}] == 1, {x, 1}, WorkingPrecision -> 101] (* Vaclav Kotesovec, Jun 28 2017 *)

Formula

Root of the equation Sum_{k>=1} A000203(k) * r^k = 1/24. - Vaclav Kotesovec, Jun 28 2017
Equals A057823^2. - Vaclav Kotesovec, Jul 02 2017

A289635 Coefficients in expansion of -q*E'_2/E_2 where E_2 is the Eisenstein Series (A006352).

Original entry on oeis.org

24, 720, 19296, 517920, 13893264, 372707136, 9998360256, 268219317312, 7195339794744, 193024557070560, 5178140391612960, 138910500937231488, 3726458885094926160, 99967214347459657344, 2681753442755678231616
Offset: 1

Views

Author

Seiichi Manyama, Jul 09 2017

Keywords

Examples

			a(1) = - A006352(1)*1 = 24,
a(2) = -(A006352(1)*a(1)) - A006352(2)*2 = 720,
a(3) = -(A006352(1)*a(2)  + A006352(2)*a(1)) - A006352(3)*3 = 19296,
a(4) = -(A006352(1)*a(3)  + A006352(2)*a(2)  + A006352(3)*a(1)) - A006352(4)*4 = 517920.
		

Crossrefs

-q*E'_k/E_k: this sequence (k=2), A289636 (k=4), A289637 (k=6), A289638 (k=8), A289639 (k=10), A289640 (k=14).

Programs

  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[24*x*Sum[k*DivisorSigma[1, k]*x^(k-1), {k, 1, nmax}]/(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)

Formula

a(n) = Sum_{d|n} d * A288968(d).
a(n) = A288877(n)/12 + 2*A000203(n).
a(n) = -Sum_{k=1..n-1} A006352(k)*a(n-k) - A006352(n)*n.
G.f.: 1/12 * E_4/E_2 - 1/12 * E_2.
a(n) ~ 1 / r^n, where r = A211342 = 0.037276810296451658150980785651644618... is the root of the equation Sum_{k>=1} A000203(k) * r^k = 1/24. - Vaclav Kotesovec, Jul 09 2017

A288995 a(n) = 12 * (A288968(n) - 2).

Original entry on oeis.org

264, 4152, 77064, 1551576, 33343752, 745374264, 17140046088, 402328199064, 9593786367240, 231629451811896, 5648880427214088, 138910500564007128, 3439808201626085640, 85686183717823968312, 2145402754204531455240, 53956201350487199168280
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2017

Keywords

Crossrefs

Related to E_{k+2}/E_k: this sequence (k=2), A192731 (k=4), A289061 (k=6).
Cf. A008683, A288877 (E_4*E_2), A288968.
Cf. A289062.

Formula

a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A288877(d).

A289394 a(n) = A288968(n)/4.

Original entry on oeis.org

6, 87, 1606, 32325, 694662, 15528631, 357084294, 8381837481, 199870549318, 4825613579415, 117685008900294, 2893968761750149, 71662670867210118, 1785128827454666007, 44695890712594405318, 1124087528135149982673, 28381310631267855206406
Offset: 1

Views

Author

Seiichi Manyama, Jul 05 2017

Keywords

Crossrefs

Cf. A006352 (E_2), A288968, A289392 (E_2^(1/4)).

Formula

a(n) = 1/2 + (1/(48*n)) * Sum_{d|n} A008683(n/d) * A288877(d).

A294181 Coefficients in expansion of E_2/E_4.

Original entry on oeis.org

1, -264, 61128, -14107296, 3255470952, -751247454384, 173361309784992, -40005651284526912, 9231887649122522280, -2130392752758423726312, 491619206548389935051568, -113448303808924351510423008, 26179851123971817380111236128
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2018

Keywords

Crossrefs

Cf. A001943, A004009 (E_4), A006352 (E_2), A288877.
E_k/E_{k+2}: this sequence (k=2), A294182 (k=4), A294183 (k=6).

Programs

  • Mathematica
    terms = 13;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E2[x]/E4[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)

Formula

Convolution inverse of A288877.
a(n) ~ (-1)^n * 1024 * Pi^11 * exp(Pi*sqrt(3)*n) / (3^(3/2) * Gamma(1/3)^18). - Vaclav Kotesovec, Jun 03 2018
Showing 1-9 of 9 results.