cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A288820 Indices of records in A288818.

Original entry on oeis.org

1, 2, 23, 223, 233, 237, 2237, 2337, 22337, 23137, 23337, 23373, 23797, 223373, 223797, 231373, 233137, 233797, 2233797, 2313797, 2331373, 2333797, 2337379, 2337397, 2353797, 22353797, 22373797, 23137397, 23173797, 23313797, 23353797, 23373797
Offset: 1

Views

Author

Hans Havermann, Jun 17 2017

Keywords

Comments

If one assumes that larger terms begin with 22 or 23, then a(54)-a(64) are: 223373733797, 223537373797, 231337373797, 231353673797, 231353733797, 231373733797, 233137337397, 233537373797, 233753733797, 235313733797, and 235373733797. - Hans Havermann, Jul 31 2017

Crossrefs

Cf. A288818, A288819 (records' value), A080670.

Programs

  • Mathematica
    ric[d_, lp_] := Block[{p, e, i, j, n = Length@d}, If[n == 0, cnt++, If[d[[1]] > 0, Do[p = FromDigits@ Take[d, i]; If[p > lp && PrimeQ@p, ric[Take[d, i - n], p]; Do[e = Take[d, {i + 1, j}]; If[e[[1]] > 0 && e != {1}, ric[Take[d, j - n], p]], {j, i+1, n}]], {i, n}]]]]; a[n_] := (cnt = 0; ric[ IntegerDigits@ n, 1]; cnt); L = {1}; k = 1; bst = 0; While[Length@L < 18, v = a[++k]; If[v > bst, AppendTo[L, k]; bst = v]]; L (* Giovanni Resta, Jun 19 2017 *)

A288819 Record maxima in A288818.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 8, 12, 13, 17, 18, 21, 22, 23, 25, 30, 34, 41, 45, 54, 58, 60, 62, 66, 75, 80, 82, 83, 88, 104, 110, 124, 131, 147, 163, 166, 173, 194, 220, 228, 233, 257, 290, 313, 334, 350, 359, 365, 412, 468, 477, 503, 520
Offset: 1

Views

Author

Hans Havermann, Jun 17 2017

Keywords

Comments

If one assumes that larger records occur at A288818 indices beginning with 22 or 23, then a(54)-a(64) are: 528, 534, 538, 542, 636, 657, 687, 728, 764, 768, and 847. - Hans Havermann, Jul 31 2017

Crossrefs

Cf. A288818, A288820 (records' position), A080670.

Programs

  • Mathematica
    ric[d_, lp_] := Block[{p, e, i, j, n = Length@d}, If[n == 0, cnt++, If[d[[1]] > 0, Do[p = FromDigits@ Take[d, i]; If[p > lp && PrimeQ@p, ric[Take[d, i - n], p]; Do[e = Take[d, {i + 1, j}]; If[e[[1]] > 0 && e != {1}, ric[Take[d, j - n], p]], {j, i+1, n}]], {i, n}]]]]; a[n_] := (cnt = 0; ric[ IntegerDigits@ n, 1]; cnt); Union@ FoldList[Max, Array[a, 10^6]] (* Michael De Vlieger, Jun 19 2017, after Giovanni Resta at A288818 *)

Extensions

a(46)-a(53) from Giovanni Resta, Jun 20 2017

A080670 Literal reading of the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 22, 5, 23, 7, 23, 32, 25, 11, 223, 13, 27, 35, 24, 17, 232, 19, 225, 37, 211, 23, 233, 52, 213, 33, 227, 29, 235, 31, 25, 311, 217, 57, 2232, 37, 219, 313, 235, 41, 237, 43, 2211, 325, 223, 47, 243, 72, 252, 317, 2213, 53, 233, 511, 237, 319, 229, 59, 2235
Offset: 1

Views

Author

Jon Perry, Mar 02 2003

Keywords

Comments

Exponents equal to 1 are omitted and therefore this sequence differs from A067599.
Here the first duplicate (ambiguous) term appears already with a(8)=23=a(6), in A067599 this happens only much later. - M. F. Hasler, Oct 18 2014
The number n = 13532385396179 = 13·53^2·3853·96179 = a(n) is (maybe the first?) nontrivial fixed point of this sequence, making it the first known index of a -1 in A195264. - M. F. Hasler, Jun 06 2017

Examples

			8=2^3, which reads 23, hence a(8)=23; 12=2^2*3, which reads 223, hence a(12)=223.
		

Crossrefs

See A195330, A195331 for those n for which a(n) is a contraction.
See also home primes, A037271.
See A195264 for what happens when k -> a(k) is repeatedly applied to n.
Partial sums: A287881, A287882.

Programs

  • Haskell
    import Data.Function (on)
    a080670 1 = 1
    a080670 n = read $ foldl1 (++) $
    zipWith (c `on` show) (a027748_row n) (a124010_row n) :: Integer
    where c ps es = if es == "1" then ps else ps ++ es
    -- Reinhard Zumkeller, Oct 27 2013
    
  • Maple
    ifsSorted := proc(n)
            local fs,L,p ;
            fs := sort(convert(numtheory[factorset](n),list)) ;
            L := [] ;
            for p in fs do
                    L := [op(L),[p,padic[ordp](n,p)]] ;
            end do;
            L ;
    end proc:
    A080670 := proc(n)
            local a,p ;
            if n = 1 then
                    return 1;
            end if;
            a := 0 ;
            for p in ifsSorted(n) do
                    a := digcat2(a,op(1,p)) ;
                    if op(2,p) > 1 then
                            a := digcat2(a,op(2,p)) ;
                    end if;
            end do:
            a ;
    end proc: # R. J. Mathar, Oct 02 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n=1, 1, (l->
          parse(cat(seq(`if`(l[i, 2]=1, l[i, 1], [l[i, 1],
          l[i, 2]][]), i=1..nops(l)))))(sort(ifactors(n)[2])))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 17 2020
  • Mathematica
    f[n_] := FromDigits[ Flatten@ IntegerDigits[ Flatten[ FactorInteger@ n /. {1 -> {}}]]]; f[1] = 1; Array[ f, 60] (* Robert G. Wilson v, Mar 02 2003 and modified Jul 22 2014 *)
  • PARI
    A080670(n)=if(n>1, my(f=factor(n),s=""); for(i=1,#f~,s=Str(s,f[i,1],if(f[i,2]>1, f[i,2],""))); eval(s),1) \\ Charles R Greathouse IV, Oct 27 2013; case n=1 added by M. F. Hasler, Oct 18 2014
    
  • PARI
    A080670(n)=if(n>1,eval(concat(apply(f->Str(f[1],if(f[2]>1,f[2],"")),Vec(factor(n)~)))),1) \\ M. F. Hasler, Oct 18 2014
    
  • Python
    import sympy
    [int(''.join([str(y) for x in sorted(sympy.ntheory.factorint(n).items()) for y in x if y != 1])) for n in range(2,100)] # compute a(n) for n > 1
    # Chai Wah Wu, Jul 15 2014

Extensions

Edited and extended by Robert G. Wilson v, Mar 02 2003

A290385 Base-ten pandigital factorization integers. The normal factorization (primes raised to greater-than-one exponents) of these numbers uses each digit exactly once.

Original entry on oeis.org

15618090, 20824120, 22022490, 22816290, 22908090, 23294190, 23427135, 23507490, 24843120, 26104560, 26152080, 26679990, 27114690, 27687090, 28275690, 29218704, 29363320, 29447898, 29544690, 29582490, 29670378, 29688144, 29910138, 30120144
Offset: 1

Views

Author

Hans Havermann, Jul 28 2017

Keywords

Comments

The sequence contains 14856143 terms, the largest being 7^986543210.
The corresponding zeroless sequence contains 2295201 terms, from 2992890 = 2*3*5*67*1489 to 7^98654321. - Giovanni Resta, Jul 29 2017

Examples

			20824120 is in the sequence because 2^3*5*487*1069 is pandigital.
		

Crossrefs

Programs

  • Mathematica
    pop[d_, mn_] := Union @@ Table[ Select[ FromDigits /@ Flatten[ Permutations /@ Subsets[d, {k}], 1], # > mn && PrimeQ[#] &], {k, IntegerLength@ mn, Length[d]}]; ric[w_, d_, p_] := If[d == {}, cnt++; If[Max[Last /@ w] < 30 && Times @@ (Power @@@ w) <= 4*10^7, AppendTo[L, w]], Block[{pp = pop[d, p], v}, Do[v = Complement[d, IntegerDigits@ x]; ric[Append[w, {x, 1}], v, x]; Do[If[e > 1, ric[Append[w, {x, e}], Complement[v, IntegerDigits@e], x]], {e, Union[ FromDigits /@ Flatten[ Permutations /@ Subsets[v, {1, Length@v}], 1]]}], {x, pp}]]]; Monitor[cnt = 0; L = {}; ric[{}, Range[0, 9], 1];, cnt]; Print["cnt = ", cnt]; Sort[(Times @@ (Power @@@ #)) & /@ L] (* Giovanni Resta, Jul 29 2017 *)
Showing 1-4 of 4 results.