A288853 Triangle read by rows: T(n,k) is the number of surjective linear mappings from an n-dimensional vector space over F_2 onto a k-dimensional vector space, n>=0, 0<=k<=n.
1, 1, 1, 1, 3, 6, 1, 7, 42, 168, 1, 15, 210, 2520, 20160, 1, 31, 930, 26040, 624960, 9999360, 1, 63, 3906, 234360, 13124160, 629959680, 20158709760, 1, 127, 16002, 1984248, 238109760, 26668293120, 2560156139520, 163849992929280, 1, 255, 64770, 16322040, 4047865920, 971487820800, 217613271859200, 41781748196966400, 5348063769211699200
Offset: 0
Examples
1; 1, 1; 1, 3, 6; 1, 7, 42, 168; 1, 15, 210, 2520, 20160; 1, 31, 930, 26040, 624960, 9999360; ...
Links
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Jeremy L. Martin, Lecture Notes on Algebraic Combinatorics, 2010-2023, Example 2.3.6.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Wikipedia, Green's relations.
Crossrefs
Programs
-
Mathematica
Table[Table[Product[q^n - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0,8}] // Grid
Comments