cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A288253 Number of heptagons that can be formed with perimeter n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 13, 19, 24, 34, 42, 58, 70, 93, 112, 145, 171, 218, 256, 320, 372, 458, 528, 643, 735, 884, 1006, 1198, 1352, 1597, 1795, 2102, 2350, 2732, 3041, 3513, 3892, 4468, 4934, 5633, 6194, 7037, 7715, 8722, 9531, 10728, 11690
Offset: 7

Views

Author

Seiichi Manyama, Jun 07 2017

Keywords

Comments

Number of (a1, a2, ... , a7) where 1 <= a1 <= ... <= a7 and a1 + a2 + ... + a6 > a7.

Crossrefs

Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), this sequence (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).

Formula

G.f.: x^7/((1-x)*(1-x^2)* ... *(1-x^7)) - x^12/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^12)).
a(2*n+12) = A026813(2*n+12) - A288341(n), a(2*n+13) = A026813(2*n+13) - A288341(n) for n >= 0. - Seiichi Manyama, Jun 08 2017

A344110 Triangle read by rows: T(n,k) = 2^(n*k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 1, 8, 64, 512, 1, 16, 256, 4096, 65536, 1, 32, 1024, 32768, 1048576, 33554432, 1, 64, 4096, 262144, 16777216, 1073741824, 68719476736, 1, 128, 16384, 2097152, 268435456, 34359738368, 4398046511104, 562949953421312
Offset: 0

Views

Author

Mohammad K. Azarian, May 10 2021

Keywords

Comments

T(n, k) is the number of relations from an n-element set into a k-element set, n >= 0, 0 <= k <= n.
T(n,k) is the size of the right principal ideal generated by A where A is an n X n matrix over GF(2) having rank k. The right principal ideal of A contains precisely the matrices whose image is contained in the image of A. - Geoffrey Critzer, Sep 25 2022

Examples

			T(3,3) = number of relations from a 3-element set into a 3-element set=2^(3*3)=512.
Triangle begins:
   1
   1   2
   1   4      16
   1   8      64      512
   1  16     256     4096      65536
   1  32    1024    32768    1048576    33554432
   ...
		

Crossrefs

Programs

  • Mathematica
    Table[2^(n*k), {n, 0, 10}, {k, 0, n}]

Formula

T(n,k) = 2^(n*k).
T(n,k) = Sum_{j=0..k} A288853(n,j)*A022166(n,j). - Geoffrey Critzer, Jan 02 2023
Showing 1-2 of 2 results.