A288913 a(n) = Lucas(4*n + 3).
4, 29, 199, 1364, 9349, 64079, 439204, 3010349, 20633239, 141422324, 969323029, 6643838879, 45537549124, 312119004989, 2139295485799, 14662949395604, 100501350283429, 688846502588399, 4721424167835364, 32361122672259149, 221806434537978679, 1520283919093591604
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (7,-1).
Crossrefs
Partial sums are in A081007 (after 0).
Programs
-
Magma
[Lucas(4*n + 3): n in [0..30]]; // G. C. Greubel, Dec 22 2017
-
Mathematica
LucasL[4 Range[0, 21] + 3] LinearRecurrence[{7,-1}, {4,29}, 30] (* G. C. Greubel, Dec 22 2017 *)
-
PARI
Vec((4 + x)/(1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
-
Python
from sympy import lucas def a(n): return lucas(4*n + 3) print([a(n) for n in range(22)]) # Michael S. Branicky, Apr 29 2021
-
Sage
def L(): x, y = -1, 4 while True: yield y x, y = y, 7*y - x r = L(); [next(r) for in (0..21)] # _Peter Luschny, Jun 20 2017
Formula
G.f.: (4 + x)/(1 - 7*x + x^2).
a(n) = 7*a(n-1) - a(n-2) for n>1, with a(0)=4, a(1)=29.
a(n) = ((sqrt(5) + 1)^(4*n + 3) - (sqrt(5) - 1)^(4*n + 3))/(8*16^n).
a(n) = Fibonacci(4*n+4) + Fibonacci(4*n+2).
a(n+1)*a(n+k) - a(n)*a(n+k+1) = 15*Fibonacci(4*k). Example: for k=6, a(n+1)*a(n+6) - a(n)*a(n+7) = 15*Fibonacci(24) = 695520.
Comments