A288942 Number A(n,k) of ordered rooted trees with n non-root nodes and all outdegrees <= k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 9, 1, 0, 1, 1, 2, 5, 13, 21, 1, 0, 1, 1, 2, 5, 14, 36, 51, 1, 0, 1, 1, 2, 5, 14, 41, 104, 127, 1, 0, 1, 1, 2, 5, 14, 42, 125, 309, 323, 1, 0, 1, 1, 2, 5, 14, 42, 131, 393, 939, 835, 1, 0
Offset: 0
Examples
A(4,2) = 9: . . o o o o o o o o o . | | | | / \ / \ / \ / \ / \ . o o o o o o o o o o o o o o . | | / \ / \ | | ( ) ( ) | | . o o o o o o o o o o o o o o . | / \ | | | | . o o o o o o o . | . o . Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 1, 4, 5, 5, 5, 5, 5, 5, ... 0, 1, 9, 13, 14, 14, 14, 14, 14, ... 0, 1, 21, 36, 41, 42, 42, 42, 42, ... 0, 1, 51, 104, 125, 131, 132, 132, 132, ... 0, 1, 127, 309, 393, 421, 428, 429, 429, ... 0, 1, 323, 939, 1265, 1385, 1421, 1429, 1430, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- N. Hein and J. Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015
- Index entries for sequences related to rooted trees
Crossrefs
Programs
-
Maple
b:= proc(u, o, k) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1, k), j=1..min(1, u))+ add(b(u+j-1, o-j, k), j=1..min(k, o))) end: A:= (n, k)-> b(0, n, k): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]]; A[n_, k_] := b[0, n, k]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 27 2017, translated from Maple *)
-
PARI
T(n,k)=polcoeff(serreverse(x*(1-x)/(1-x*x^k) + O(x^2*x^n)), n+1); for(n=0, 10, for(k=0, 10, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 29 2017
Formula
A(n,k) = Sum_{j=0..k} A203717(n,j).
G.f. of column k: G(x)/x where G(x) is the reversion of x*(1-x)/(1-x^(k+1)). - Andrew Howroyd, Nov 30 2017
G.f. g_k(x) of column k satisfies: g_k(x) = Sum_{j=0..k} (x*g_k(x))^j. - Alois P. Heinz, May 05 2019
A(n,k) = Sum_{j=0..n/(k+1)} (-1)^j/(n+1) * binomial(n+1,j) * binomial(2*n-j*(k+1),n). [Hein Eq (10)] - R. J. Mathar, Oct 14 2022; corrected by Tijn Caspar de Leeuw, Jul 07 2024
Comments