A288990
Define the exponents b(1), b(2), ... such that E_12 is equal to (1-q)^b(1) (1-q^2)^b(2) (1-q^3)^b(3) ... . a(n) = b(n) * A288989(n).
Original entry on oeis.org
-65520, -90598009320, 442356959924880, 4181653887366701917080, -42458488603945952980072176, -254774947034575235293755006524520, 3880639008647135220484579615019041680, 17460929863645555627595091312548802016985880
Offset: 1
b(1) = 24 + 1/1 * A008683(1/1) * A288472(1)/A288989(1) = 24 + 1/1 * (-82104/691) = -65520/691,
b(2) = 24 + 1/2 * (A008683(2/1) * A288472(1)/A288989(1) + A008683(2/2) * A288472(2)/A288989(2)) = 24 + 1/2 * (82104/691 - 181275671592/477481) = -90598009320/477481.
A288851
Exponents a(1), a(2), ... such that E_6, 1 - 504*q - 16632*q^2 - ... (A013973) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
504, 143388, 51180024, 20556578700, 8806299845112, 3929750661380124, 1803727445909594616, 845145871847732769804, 402283166289266872824312, 193877350835487271784566812, 94381548697864188120110027256, 46328820782943001597184984563596
Offset: 1
A110163
Exponents a(1), a(2), ... such that theta series of E_8 lattice, 1 + 240 q + 2160 q^2 + ... (A004009) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ...
Original entry on oeis.org
-240, 26760, -4096240, 708938760, -130880766192, 25168873498760, -4978357936128240, 1005225129317834760, -206195878414962688240, 42824436296045618358408, -8983966738037593190400240, 1900416270294787067711818760, -404814256845771786255876096240, 86744167089111545378556727322760
Offset: 1
From _Seiichi Manyama_, Jun 17 2017: (Start)
a(1) = 8 + 1/3 * A008683(1/1) * A288261(1) = 8 + 1/3 * (-744) = -240,
a(2) = 8 + 1/6 * (A008683(2/1) * A288261(1) + A008683(2/2) * A288261(2)) = 8 + 1/6 * (744 + 159768) = 26760. (End)
-
terms = 14; Clear[a, sol];
a4009[n_] := If[n == 0, 1, 240 DivisorSigma[3, n]];
sol[0] = {}; sol[kmax_] := sol[kmax] = Join[sol[kmax-1], SolveAlways[ Sum[ a4009[k] q^k, {k, 0, kmax}] == Normal[Product[(1-q^k)^a[k], {k, 1, kmax}] + O[q]^(kmax+1)] /. sol[kmax-1], q][[1]] ];
A110163 = Array[a, terms] /. sol[terms] (* Jean-François Alcover, Jul 03 2017 *)
A288968
Exponents a(1), a(2), ... such that E_2, 1 - 24*q - 72*q^2 - ... (A006352) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
24, 348, 6424, 129300, 2778648, 62114524, 1428337176, 33527349924, 799482197272, 19302454317660, 470740035601176, 11575875047000596, 286650683468840472, 7140515309818664028, 178783562850377621272, 4496350112540599930692
Offset: 1
A289029
Exponents a(1), a(2), ... such that E_14, 1 - 24*q - 196632*q^2 + ... (A058550) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
24, 196908, 42987544, 21974456220, 8544538312728, 3980088408377644, 1793770730037338136, 847156322106368439324, 401870774532436947447832, 193962999708079363021283628, 94363580764388112933729226776, 46332621615483591171320408201116
Offset: 1
A289024
Exponents a(1), a(2), ... such that E_10, 1 - 264*q - 135432*q^2 + ... (A013974) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
264, 170148, 47083784, 21265517460, 8675419078920, 3954919534878884, 1798749087973466376, 846151096977050604564, 402076970410851910136072, 193920175271783317402925220, 94372564731126150526919627016, 46330721199213296384252696382356
Offset: 1
A288471
Exponents a(1), a(2), ... such that E_8, 1 + 480*q + 61920*q^2 + ... (A008410) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
-480, 53520, -8192480, 1417877520, -261761532384, 50337746997520, -9956715872256480, 2010450258635669520, -412391756829925376480, 85648872592091236716816, -17967933476075186380800480, 3800832540589574135423637520
Offset: 1
A288472
Numerators of coefficients in expansion of E_14/E_12.
Original entry on oeis.org
1, -82104, -181275671592, 1327007921039904, 16726528971891002133912, -212292443057353273999454544, -1528649681810950691089095375538848, 27164473060529924968213209402868250688, 139687438912977894660348148674573721130447640
Offset: 0
E_14/E_12 = 1 - 82104/691 * q - 181275671592/477481 * q^2 + 1327007921039904/329939371 * q^3 + 16726528971891002133912/227988105361 * q^4 + ... .
-
terms = 9;
E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];
E12[x_] = 1 + (65520/691)*Sum[k^11*x^k/(1 - x^k), {k, 1, terms}];
E14[x]/E12[x] + O[x]^terms // CoefficientList[#, x]& // Numerator (* Jean-François Alcover, Feb 26 2018 *)
Showing 1-8 of 8 results.
Comments