cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289020 Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks.

Original entry on oeis.org

1, 1, 2, 10, 92, 1348, 28808, 845800, 32664944, 1605553552, 97868465696, 7245440815264, 640359291096512, 66598657958731840, 8051483595083729024, 1119653568781387712128, 177465810459239319017216, 31804047327185301634148608, 6398867435594240638421950976
Offset: 0

Views

Author

Alois P. Heinz, Jun 22 2017

Keywords

Comments

The semilengths of Dyck paths counted by a(n) are elements of the integer interval [2*n-1, n*(n+1)/2] = [A060747(n), A000217(n)] for n>0.

Examples

			. a(2) = 2:      /\    /\
.             /\/  \  /  \/\  .
		

Crossrefs

Column k=1 of A288972.

Programs

  • Maple
    b:= proc(n, j, v) option remember; `if`(n=j,
          `if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)*
           i*binomial(j-1, i-2), i=1..min(j+1, n-j))))
        end:
    a:= n-> `if`(n=0, 1, add(b(w, 1, n), w=2*n-1..n*(n+1)/2)):
    seq(a(n), n=0..18);
  • Mathematica
    b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1]*i*Binomial[j - 1, i - 2], {i, Min[j + 1, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 1, n], {w, 2*n - 1, n*(n + 1)/2}]]; Table[a[n], {n, 0, 18}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)