A289020 Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks.
1, 1, 2, 10, 92, 1348, 28808, 845800, 32664944, 1605553552, 97868465696, 7245440815264, 640359291096512, 66598657958731840, 8051483595083729024, 1119653568781387712128, 177465810459239319017216, 31804047327185301634148608, 6398867435594240638421950976
Offset: 0
Keywords
Examples
. a(2) = 2: /\ /\ . /\/ \ / \/\ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)* i*binomial(j-1, i-2), i=1..min(j+1, n-j)))) end: a:= n-> `if`(n=0, 1, add(b(w, 1, n), w=2*n-1..n*(n+1)/2)): seq(a(n), n=0..18);
-
Mathematica
b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1]*i*Binomial[j - 1, i - 2], {i, Min[j + 1, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 1, n], {w, 2*n - 1, n*(n + 1)/2}]]; Table[a[n], {n, 0, 18}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)
Comments