A289055 Triangle read by rows: T(n,k) = (k+1)*A028815(n) for 0 <= k <= n.
2, 3, 6, 4, 8, 12, 6, 12, 18, 24, 8, 16, 24, 32, 40, 12, 24, 36, 48, 60, 72, 14, 28, 42, 56, 70, 84, 98, 18, 36, 54, 72, 90, 108, 126, 144, 20, 40, 60, 80, 100, 120, 140, 160, 180, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330
Offset: 0
Examples
Triangle begins: 2; 3, 6; 4, 8, 12; 6, 12, 18, 24; 8, 16, 24, 32, 40; 12, 24, 36, 48, 60, 72; 14, 28, 42, 56, 70, 84, 98; 18, 36, 54, 72, 90, 108, 126, 144; 20, 40, 60, 80, 100, 120, 140, 160, 180; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
/* As triangle (here NthPrime(0)=1) */ [[(k+1)*(NthPrime(n)+1): k in [0..n]]: n in [0.. 15]];
-
Mathematica
Join[{2}, t[n_, k_] := (k + 1) (Prime[n] + 1); Table[t[n, k], {n, 10}, {k, 0, n}] //Flatten]
-
SageMath
def A289055(n,k): return 2 if n==0 else (k+1)*(nth_prime(n) +1) flatten([[A289055(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 05 2024
Formula
a(n) = A289108(n) + 1.