A289108 Triangle read by rows: T(n,k) = (k + 1)*prime(n) + k for n > 0, 0 <= k <= n, and with T(0,0) = 1.
1, 2, 5, 3, 7, 11, 5, 11, 17, 23, 7, 15, 23, 31, 39, 11, 23, 35, 47, 59, 71, 13, 27, 41, 55, 69, 83, 97, 17, 35, 53, 71, 89, 107, 125, 143, 19, 39, 59, 79, 99, 119, 139, 159, 179, 23, 47, 71, 95, 119, 143, 167, 191, 215, 239, 29, 59, 89, 119, 149, 179, 209, 239, 269, 299, 329
Offset: 0
Examples
Triangle begins: 1; 2, 5; 3, 7, 11; 5, 11, 17, 23; 7, 15, 23, 31, 39; 11, 23, 35, 47, 59, 71; 13, 27, 41, 55, 69, 83, 97; 17, 35, 53, 71, 89, 107, 125, 143; 19, 39, 59, 79, 99, 119, 139, 159, 179; 23, 47, 71, 95, 119, 143, 167, 191, 215, 239; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
/* As triangle (here NthPrime(0)=1) */ [[(k+1)*NthPrime(n)+k: k in [0..n]]: n in [0.. 15]];
-
Mathematica
Join[{1}, T[n_,k_] := (k + 1) Prime[n] + k; Table[T[n, k], {n, 10}, {k, 0, n}]//Flatten]
-
SageMath
def A289108(n,k): return 1 if n==0 else (k+1)*nth_prime(n) +k flatten([[A289108(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 04 2024
Extensions
Definition corrected by Bruno Berselli, Sep 06 2017