cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289121 a(n) = (8 - 2*n + 11*n^2 - 6*n^3 + n^4)/4.

Original entry on oeis.org

3, 4, 5, 12, 37, 98, 219, 430, 767, 1272, 1993, 2984, 4305, 6022, 8207, 10938, 14299, 18380, 23277, 29092, 35933, 43914, 53155, 63782, 75927, 89728, 105329, 122880, 142537, 164462, 188823, 215794, 245555, 278292, 314197, 353468, 396309, 442930, 493547, 548382, 607663
Offset: 1

Views

Author

Eric W. Weisstein, Aug 17 2017

Keywords

Comments

For n > 1, number of maximal irredundant sets in the n-crown graph.

Programs

  • Magma
    [(8 - 2*n + 11*n^2 - 6*n^3 + n^4)/4 : n in [1..50]]; // Wesley Ivan Hurt, Dec 02 2021
  • Mathematica
    Table[(8 - 2 n + 11 n^2 - 6 n^3 + n^4)/4, {n, 20}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {3, 4, 5, 12, 37}, 20]
    CoefficientList[Series[(-3 + 11 x - 15 x^2 + 3 x^3 - 2 x^4)/(-1 + x)^5, {x, 0, 20}], x]
  • PARI
    x='x+O('x^50); Vec(x*(3 - 11*x + 15*x^2 - 3*x^3 + 2*x^4)/(1 - x)^5) \\ G. C. Greubel, Aug 17 2017
    

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(3 - 11*x + 15*x^2 - 3*x^3 + 2*x^4)/(1 - x)^5.
E.g.f.: (1/4)*((8 + 4*x + x^4)*exp(x) - 8). - G. C. Greubel, Aug 17 2017