A289191 Number of polygonal tiles with n sides with two exits per side and n edges connecting pairs of exits, with no edges between exits on the same side and non-isomorphic under rotational symmetry.
0, 2, 4, 22, 112, 1060, 11292, 149448, 2257288, 38720728, 740754220, 15648468804, 361711410384, 9081485302372, 246106843197984, 7160143986526240, 222595582448849152, 7364186944683168828, 258327454310582805036, 9577476294162996275928, 374205233351106756670120
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Marko Riedel, Hexagonal tiles.
- Marko Riedel, Maple code to compute number of tiles by ordinary enumeration and by Power Group Enumeration.
- Marko Riedel, Maple code for number of tiles using Burnside lemma.
Crossrefs
Programs
-
PARI
a(n) = {sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(i=0, m, (-1)^i * binomial(m, i) * sum(j=0, m-i, (d%2==0 || m-i-j==0) * binomial(2*(m-i), 2*j) * d^j * (2*j)! / (j!*2^j) )))/n} \\ Andrew Howroyd, Jan 26 2020
Extensions
Terms a(14) and beyond from Andrew Howroyd, Jan 26 2020
Comments