Original entry on oeis.org
2, 4, 112, 11292, 740754220, 361711410384, 222595582448849152, 258327454310582805036, 661821993709898403923269564, 10266982973657640119698928948136690256, 34586475747666402744018445215769168804860, 2847089959666118831608487671650698855934142888811472
Offset: 1
A053871
a(0)=1; a(1)=0; a(n) = 2*(n-1)*(a(n-1) + a(n-2)).
Original entry on oeis.org
1, 0, 2, 8, 60, 544, 6040, 79008, 1190672, 20314880, 387099936, 8148296320, 187778717632, 4702248334848, 127140703364480, 3691602647581184, 114562300528369920, 3784124901630435328, 132555364873399378432, 4908221631901073295360, 191549525877429961604096
Offset: 0
- R. Bricard, L'Intermédiaire des Mathématiciens, 8 (1901), 312-313.
- Michael De Vlieger, Table of n, a(n) for n = 0..404 (First 100 terms from _T. D. Noe_)
- A. Ayyer, Determinants and Perfect Matchings, arXiv:1106.1465 [math.CO], 2011.
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Bela Bollobas, The number of 1-factors in 2k-connected graphs, J. Combin. Theory Ser. B 25 (1978), no. 3, 363--366. MR0516268 (80m:05060) - _N. J. A. Sloane_, Mar 26 2012
- James N. Brawner, Dinner, Dancing and Tennis, Anyone?, Mathematics Magazine, Vol. 73, No 1 (2000).
- M. A. Brodie, Avoiding your spouse at a party leads to war, Math. Mag., 75 (2002), 203-208.
- Davi B. Costa, Bogdan A. Dobrescu, and Patrick J. Fox, Chiral Abelian gauge theories with few fermions, arXiv:2001.11991 [hep-ph], 2020.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, Avoiding your spouse at a bridge party, Math. Mag., 74 (2001), 33-41.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set
See
A289191 for when rotational symmetries of the tiles are taken into account. -
Marko Riedel, Jun 28 2017
Cf.
A165968, number of pairings of 2n things disjoint to a given pairing, and containing a given pair not in the given pairing. It is given by a(n)/(2n-2). - Lewis Mammel (l_mammel(AT)att.net), Oct 07 2009
-
a053871 n = a053871_list !! n
a053871_list = 1 : 0 : zipWith (*)
[2,4..] (zipWith (+) a053871_list $ tail a053871_list)
-- Reinhard Zumkeller, Mar 07 2012
-
f:= gfun:-rectoproc({a(0) = 1, a(1) = 0, a(n) = 2*(n - 1)*(a(n - 1) + a(n - 2))},a(n),remember):
map(f, [$0..30]); # Robert Israel, May 10 2016
-
RecurrenceTable[{a[0]==1,a[1]==0,a[n]==2(n-1)(a[n-1]+a[n-2])}, a[n],{n,20}] (* Harvey P. Dale, Sep 15 2011 *)
CoefficientList[Assuming[{Element[x, Reals], x>0}, Series[Sqrt[Pi/2] * (I + Erfi[Sqrt[(1+1/x)/2]]) / (E^((1+x)/(2*x)) * Sqrt[x*(x+1)]), {x, 0, 20}]], x] (* Vaclav Kotesovec, Feb 15 2015 *)
Range[0, 20]! CoefficientList[Series[1/(Exp[x] Sqrt[1 - 2 x]), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 15 2017 *)
Table[(-1)^n HypergeometricPFQ[{1/2, -n}, {}, 2], {n, 20}] (* Eric W. Weisstein, Jun 15 2017 *)
Table[I (-1)^n HypergeometricU[1/2, 3/2 + n, -1/2]/Sqrt[2], {n, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
-
a(n)=(-1)^(n+1)*sum(k=0,n,(-1)^k*binomial(n,k)*prod(i=0,k,2*i-1))
A289269
Number of polygonal tiles with n sides with two exits per side and n edges connecting pairs of exits, with no edges between exits on the same side and non-isomorphic under rotational and reflectional, i.e. dihedral, symmetry.
Original entry on oeis.org
0, 2, 4, 19, 80, 638, 6054, 76692, 1137284, 19405244, 370597430, 7825459362, 180862277352, 4540781512946, 123053646087312, 3580073396748560, 111297799861936256, 3682093529146577694, 129163727524848878358, 4788738149626920381804, 187102616692953377567060
Offset: 1
See
A053871 for tiles with no symmetries being taken into account,
A289191 for tiles with rotational symmetries only being taken into account.
-
\\ here R(n) is A289191.
S(n)={sum(i=0, n\2, (-1)^i * sum(j=0, (n-2*i)\2, (2*j)!/j! * if(n%2, if(j, 2*binomial(n\2, i)*binomial(n-2*i-1, 2*j-1)), binomial(n/2, i)*binomial(n-2*i, 2*j) + if(j, binomial(n/2-1, i)*binomial(n-2*i-2, 2*j-2))) / 2))}
R(n)={sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(i=0, m, (-1)^i * binomial(m, i) * sum(j=0, m-i, (d%2==0 || m-i-j==0) * binomial(2*(m-i), 2*j) * d^j * (2*j)! / (j!*2^j) )))/n}
a(n)={(R(n) + S(n))/2} \\ Andrew Howroyd, Jan 26 2020
Showing 1-3 of 3 results.
Comments