cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289225 Number of ways to select 4 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 13, 859, 9585, 56520, 231635, 749223, 2051819, 4965960, 10924065, 22268395, 42654733, 77575104, 135020535, 226306535, 367085655, 578573168, 889013589, 1335417435, 1965599305, 2840550040, 4037177403, 5651451399, 7801992035, 10634139000, 14324544425, 19086331563
Offset: 4

Views

Author

Heinrich Ludwig, Jun 29 2017

Keywords

Comments

Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A289231.

Examples

			There are thirteen ways to choose four 2 X 2 X 2 triangles (aaa, ..., ddd) from a 5 X 5 X 5 point grid, for example:
      a           a           a           .
     a a         a a         a a         a a
    b c c       . d .       . . .       . a .
   b b c d     b d d c     b c c d     b c c d
  . . . d d   b b . c c   b b c d d   b b c d d
The other nine possible selections are rotations and reflections of these.
Note: aaa, ..., ddd are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • Maple
    A289225:=n->(n^8 -8*n^7 -50*n^6 +556*n^5 +231*n^4 -12388*n^3 +17914*n^2 +86648*n -198528)/24: seq(A289225(n), n=4..50); # Wesley Ivan Hurt, Jun 29 2017
  • PARI
    concat(0, Vec(x^5*(13 + 742*x + 2322*x^2 + 87*x^3 - 2503*x^4 + 684*x^5 + 560*x^6 - 225*x^7) / (1 - x)^9 + O(x^30))) \\ Colin Barker, Jun 30 2017

Formula

a(n) = (n^8 -8*n^7 -50*n^6 +556*n^5 +231*n^4 -12388*n^3 +17914*n^2 +86648*n -198528)/24.
From Colin Barker, Jun 30 2017: (Start)
G.f.: x^5*(13 + 742*x + 2322*x^2 + 87*x^3 - 2503*x^4 + 684*x^5 + 560*x^6 - 225*x^7) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>12.
(End)