A289276 Numbers k such that phi(k) (the totient function A000010) is a power of the number of divisors of k (A000005).
1, 2, 3, 5, 8, 10, 17, 18, 24, 30, 34, 63, 76, 85, 128, 136, 170, 257, 315, 333, 364, 380, 436, 444, 514, 640, 680, 972, 1285, 1542, 1820, 1824, 1836, 1875, 2142, 2220, 2907, 3285, 3488, 3796, 4369, 4788, 4860
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..5319 (first 526 terms from Antti Karttunen)
Crossrefs
Programs
-
Mathematica
Join[{1},Select[Range[2,5000],IntegerQ[Log[DivisorSigma[0,#],EulerPhi[#]]]&]] (* Harvey P. Dale, Aug 06 2017 *)
-
PARI
ispowerof(n, k)= if(k==1, return(n==1)); while(n>=k, if(n%k!=0, return(0)); n\=k); n==1 isa(n) = ispowerof(eulerphi(n),numdiv(n)) \\ Quick program, fast enough for early values.
-
PARI
is(n) = if(n==1, return(1)); my(f = factor(n); phi = eulerphi(f), ndiv = numdiv(f), e = logint(phi, ndiv)); ndiv^e == phi \\ David A. Corneth, Jun 30 2017, changed per suggestion of Charles R Greathouse IV
-
PARI
isA289276(n)= if(n==1, return(1)); my(phi = eulerphi(n), ndiv = numdiv(n), v = valuation(phi, ndiv)); ndiv^v == phi; \\ (A variant of above program). - Antti Karttunen, Jun 30 2017
-
PARI
list(lim)=my(v=List([1])); forfactored(n=2,lim\1, my(phi = eulerphi(n), ndiv = numdiv(n)); if(ndiv^valuation(phi,ndiv) == phi, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jul 01 2017
Comments