cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289276 Numbers k such that phi(k) (the totient function A000010) is a power of the number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 3, 5, 8, 10, 17, 18, 24, 30, 34, 63, 76, 85, 128, 136, 170, 257, 315, 333, 364, 380, 436, 444, 514, 640, 680, 972, 1285, 1542, 1820, 1824, 1836, 1875, 2142, 2220, 2907, 3285, 3488, 3796, 4369, 4788, 4860
Offset: 1

Views

Author

Keywords

Comments

A019434 is a subsequence. - David A. Corneth, Jun 30 2017
Is the frequency of e such that A000005(a(n))^e = A000010(a(n)) finite? - David A. Corneth, Jul 01 2017

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[2,5000],IntegerQ[Log[DivisorSigma[0,#],EulerPhi[#]]]&]] (* Harvey P. Dale, Aug 06 2017 *)
  • PARI
    ispowerof(n, k)= if(k==1, return(n==1)); while(n>=k, if(n%k!=0, return(0)); n\=k); n==1
    isa(n) = ispowerof(eulerphi(n),numdiv(n)) \\ Quick program, fast enough for early values.
    
  • PARI
    is(n) = if(n==1, return(1)); my(f = factor(n); phi = eulerphi(f), ndiv = numdiv(f), e = logint(phi, ndiv)); ndiv^e == phi \\ David A. Corneth, Jun 30 2017, changed per suggestion of Charles R Greathouse IV
    
  • PARI
    isA289276(n)= if(n==1, return(1)); my(phi = eulerphi(n), ndiv = numdiv(n), v = valuation(phi, ndiv)); ndiv^v == phi; \\ (A variant of above program). - Antti Karttunen, Jun 30 2017
    
  • PARI
    list(lim)=my(v=List([1])); forfactored(n=2,lim\1, my(phi = eulerphi(n), ndiv = numdiv(n)); if(ndiv^valuation(phi,ndiv) == phi, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jul 01 2017