A289297 Expansion of (q*j(q))^(1/12) where j(q) is the elliptic modular invariant (A000521).
1, 62, -4735, 651070, -103766140, 17999397756, -3292567703035, 624659270035130, -121698860487451255, 24194029851560118900, -4886913657541566648179, 999849040331683393909232, -206741394604073327046805355
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..424
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(1/4) / (2*QPochhammer[-1, x])^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *) (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/12) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(A192731(n)/12).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(5/4), where c = 0.200236163401945306105645017761063156355568043417672219092096121424... = 3^(1/4) * Gamma(1/4) * Gamma(1/3)^(3/2) / (2^(11/4) * exp(Pi/(4 * sqrt(3))) * Pi^2). - Vaclav Kotesovec, Jul 03 2017, updated Mar 06 2018
a(n) * A299826(n) ~ -exp(2*sqrt(3)*n*Pi) / (2^(5/2)*Pi*n^2). - Vaclav Kotesovec, Feb 20 2018