A106205
Expansion of (q*j(q))^(1/24) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 31, -2848, 413823, -68767135, 12310047967, -2309368876639, 447436508910495, -88755684988520798, 17924937024841839390, -3671642907594608226078, 760722183234128461061246, -159105706560247952472114973
Offset: 0
1 + 31*q - 2848*q^2 + 413823*q^3 - 68767135*q^4 + 12310047967*q^5 - 2309368876639*q^6 + ...
(q*j(q))^(k/24): this sequence (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(1/8) / (2*QPochhammer[-1, x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/24) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
-
{a(n)=if(n<0,0, polcoeff( (ellj(x+x^2*O(x^n))*x)^(1/24),n))}
A161361
Convolution square root of A000521.
Original entry on oeis.org
1, 372, 29250, -134120, 54261375, -6139293372, 854279148734, -128813964933000, 20657907916144515, -3469030105750871000, 603760629237519966018, -108124880417607682194048, 19820541224206810447813500
Offset: 0
a(2) = 29250 = 1/2 * (A000521(2) - 372^2) = 1/2 * (196884 - 138384) = 29250.
G.f. = 1 + 372*x + 29250*x^2 - 134120*x^3 + 54261375*x^4 - ...
G.f. = 1/q + 372*q + 29250*q^3 - 134120*q^5 + 54261375*q^7 + ...
(q*j(q))^(k/24):
A289397 (k=-1),
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304(k=10),
A289305 (k=11), this sequence (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(3/2) / (4096 * QPochhammer[-1, x]^12), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); A = x * (eta(x^2 + A) / eta(x + A))^24; polcoeff( sqrt(x * (1 + 256*A)^3 / A), n))}; /* Michael Somos, May 03 2014 */
A289298
Expansion of (q*j(q))^(1/8) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 93, -5661, 741532, -113207799, 19015433748, -3390166183729, 629581913929419, -120437982238038210, 23564574046009042869, -4692899968498921291530, 948024211601180444075739, -193775768073341380441728322
Offset: 0
(q*j(q))^(k/24):
A106205 (k=1),
A289297 (k=2), this sequence (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(3/8) / (2*QPochhammer[-1, x])^3, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/8) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
A289299
Expansion of (q*j(q))^(1/6) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 124, -5626, 715000, -104379375, 16966161252, -2946652593626, 535467806605000, -100554207738307500, 19359037551684042500, -3800593180746056684372, 757968936254309704500248, -153133996443087103652605627
Offset: 0
(q*j(q))^(k/24):
A106205 (k=1),
A289297 (k=2),
A289298 (k=3), this sequence (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12).
-
CoefficientList[Series[Sqrt[65536 + x*QPochhammer[-1, x]^24] / (2*QPochhammer[-1, x])^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/6) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
A289300
Expansion of (q*j(q))^(5/24) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 155, -4630, 601265, -83644610, 13148835656, -2223584717035, 395257299676190, -72843145114522035, 13796578308407774725, -2669652272250261922223, 525556527400692937755655, -104937908072571416700653120
Offset: 0
(q*j(q))^(k/24):
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4), this sequence (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(5/8) / (2*QPochhammer[-1, x])^5, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(5/24) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
A289301
Expansion of (q*j(q))^(1/4) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 186, -2673, 430118, -56443725, 8578591578, -1411853283028, 245405765574252, -44373155962556475, 8266332741845429800, -1576306833508315403544, 306275559567641721838494, -60432437032381794135586069
Offset: 0
(q*j(q))^(k/24):
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5), this sequence (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(3/4) / (64 * QPochhammer[-1, x]^6), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/4) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
A289302
Expansion of (q*j(q))^(7/24) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 217, 245, 231350, -27293420, 4017072017, -643057897118, 109259930443485, -19377905432572925, 3549922504344871655, -666990037937425724641, 127890778891452935279096, -24934077008209243436961385
Offset: 0
(q*j(q))^(k/24):
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6), this sequence (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(7/8) / (2*QPochhammer[-1, x])^7, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(7/24) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
A289303
Expansion of (q*j(q))^(3/8) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 279, 8964, -129885, 23406255, -3128904747, 473738861853, -76824787699971, 13098300010462845, -2318947179364181165, 422782870045511526012, -78914282330756685655485, 15016013710284896513279286
Offset: 0
(q*j(q))^(k/24):
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8), this sequence (k=9),
A289304 (k=10),
A289305 (k=11),
A161361 (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(9/8) / (2*QPochhammer[-1, x])^9, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(3/8) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
A289304
Expansion of (q*j(q))^(5/12) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 310, 14765, -232770, 40539830, -5199871688, 765038308115, -121140033966330, 20242157273780710, -3521886754264327670, 632344647471171938140, -116428917411726531951590, 21883035176258955622401245
Offset: 0
(q*j(q))^(k/24):
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9), this sequence (k=10),
A289305 (k=11),
A161361 (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(5/4) / (2*QPochhammer[-1, x])^10, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(5/12) + O[q]^13 //
CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
A289305
Expansion of (q*j(q))^(11/24) where j(q) is the elliptic modular invariant (A000521).
Original entry on oeis.org
1, 341, 21527, -244112, 50791235, -6177875286, 883458515093, -136541356378141, 22354744100161913, -3821528558157433970, 675604462786881129711, -122689458583136157060647, 22774615293799045532223797
Offset: 0
(q*j(q))^(k/24):
A106205 (k=1),
A289297 (k=2),
A289298 (k=3),
A289299 (k=4),
A289300 (k=5),
A289301 (k=6),
A289302 (k=7),
A007245 (k=8),
A289303 (k=9),
A289304 (k=10), this sequence (k=11),
A161361 (k=12).
-
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(11/8) / (2*QPochhammer[-1, x])^11, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
(q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(11/24) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
Showing 1-10 of 17 results.
Comments