cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289336 a(n) = numerator of (sigma(n) / phi(n)).

Original entry on oeis.org

1, 3, 2, 7, 3, 6, 4, 15, 13, 9, 6, 7, 7, 4, 3, 31, 9, 13, 10, 21, 8, 18, 12, 15, 31, 7, 20, 14, 15, 9, 16, 63, 12, 27, 2, 91, 19, 10, 7, 45, 21, 8, 22, 21, 13, 36, 24, 31, 19, 93, 9, 49, 27, 20, 9, 5, 20, 45, 30, 21, 31, 16, 26, 127, 7, 36, 34, 63, 24, 6, 36
Offset: 1

Views

Author

Jaroslav Krizek, Aug 19 2017

Keywords

Examples

			Fractions begin with: 1, 3, 2, 7/2, 3/2, 6, 4/3, 15/4, 13/6, 9/2, 6/5, 7, ...
For n = 7, sigma(7) / phi(7) = 8/6 = 4/3, a(7) = 4.
		

Crossrefs

Programs

  • Magma
    [Numerator(SumOfDivisors(n) / EulerPhi(n)): n in[1..1000]]
    
  • Mathematica
    Array[Numerator[DivisorSigma[1, #]/EulerPhi[#]] &, 71] (* Michael De Vlieger, Aug 19 2017 *)
  • PARI
    a(n) = numerator(sigma(n)/eulerphi(n)); \\ Michel Marcus, Aug 21 2017

Formula

a(n) = numerator of (A000203(n) / A000010(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A289412(k) = (Pi^4/36) * Product_{p prime} (1 + 2/p^3 - 1/p^5) = 3.6174451656... . - Amiram Eldar, Nov 21 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} A289412(k)/a(k) = Product_{p prime} (1 - 3/(p*(p + 1)) + 1/(p^2*(p + 1)) + ((p-1)^3/p^2)*Sum_{k>=3} 1/(p^k-1)) = 0.45782563109026414241... (De Koninck and Luca, 2007). - Amiram Eldar, Feb 27 2024