cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A289412 a(n) = denominator of (sigma(n) / phi(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 6, 2, 5, 1, 6, 1, 1, 8, 8, 2, 9, 4, 3, 5, 11, 2, 20, 2, 9, 3, 14, 1, 15, 16, 5, 8, 1, 12, 18, 3, 3, 8, 20, 1, 21, 5, 4, 11, 23, 4, 14, 20, 4, 12, 26, 3, 5, 1, 9, 14, 29, 2, 30, 5, 9, 32, 4, 5, 33, 16, 11, 1, 35, 8, 36, 6, 10, 9, 5, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 19 2017

Keywords

Comments

a(n) = 1 for numbers in A020492 (balanced numbers).

Examples

			For n = 7, sigma(7) / phi(7) = 8/6 = 4/3, a(n) = 3.
		

Crossrefs

Programs

  • Magma
    [Denominator(SumOfDivisors(n) / EulerPhi(n)): n in[1..1000]]
    
  • Mathematica
    Array[Denominator[DivisorSigma[1, #]/EulerPhi[#]] &, 78] (* Michael De Vlieger, Aug 19 2017 *)
  • PARI
    a(n) = denominator(sigma(n)/eulerphi(n)); \\ Michel Marcus, Aug 21 2017

Formula

a(n) = denominator of (A000203(n) / A000010(n)).

A293391 Integers n such that sigma(n)/phi(n) is a perfect square.

Original entry on oeis.org

1, 14, 30, 105, 248, 264, 418, 714, 1485, 3080, 3135, 3596, 3828, 3956, 4064, 5396, 6678, 8636, 10098, 12648, 20026, 20790, 21318, 22152, 23374, 24882, 25714, 26040, 35074, 35343, 39105, 41656, 43890, 44660, 49938, 55154, 56134, 56536, 61344, 71145, 74613, 86304, 87087, 94944
Offset: 1

Views

Author

Keywords

Comments

From Robert Israel, Dec 12 2017: (Start)
Intersection of A011257 and A020492.
If x and y are coprime members of the sequence, then x*y is in the sequence.
Contains all members of A133028 except 3. (End)

Examples

			sigma(14)=3*8=24, phi(14)=14*(1/2)*(6/7)=6, sigma(14)/phi(14)=2^2, so 14 is in the list.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 100000 do
        r := numtheory[sigma](n)/numtheory[phi](n) ;
        if issqr(r) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 07 2017
  • Mathematica
    Select[Range[10^5], IntegerQ@ Sqrt[DivisorSigma[1, #]/EulerPhi[#]] &] (* Michael De Vlieger, Dec 08 2017 *)
  • PARI
    isok(n) = my(q=sigma(n)/eulerphi(n)); issquare(q) && (denominator(q) == 1); \\ Michel Marcus, Dec 07 2017; corrected Sep 21 2019

Formula

a(n) = sigma(n)/phi(n) = m^2, for some integer m.

A370689 Numerator of sigma(phi(n))/phi(sigma(n)), where sigma is the sum of the divisors function and phi is the Euler totient function.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 3, 7, 1, 7, 9, 7, 14, 3, 15, 1, 31, 1, 39, 5, 7, 3, 9, 15, 7, 7, 39, 7, 7, 5, 9, 31, 21, 31, 15, 7, 91, 39, 5, 31, 15, 7, 24, 7, 5, 3, 9, 31, 8, 7, 21, 10, 49, 39, 15, 15, 91, 7, 45, 31, 28, 9, 91, 1, 31, 7, 9, 7, 21, 5, 6, 5, 65, 91, 3, 91, 21
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2024

Keywords

Examples

			Fractions begin with: 1, 1/2, 3/2, 1/2, 7/2, 3/4, 3, 7/8, 1, 7/6, 9/2, 7/12, ...
		

Crossrefs

Cf. A000010, A000203, A033632, A062401, A062402, A065395, A066930, A289336, A073858 (positions of 1's), A289412, A370690 (denominators).

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]]/EulerPhi[DivisorSigma[1, n]], {n, 1, 100}] // Numerator
  • PARI
    a(n) = {my(f = factor(n)); numerator(sigma(eulerphi(f)) / eulerphi(sigma(f)));}

Formula

Let f(n) = a(n)/A370690(n) = A062402(n)/A062401(n).
Formulas from De Koninck and Luca (2007):
lim sup_{n->oo} f(n)/log_2(n)^2 = exp(2*gamma) (A091724).
lim inf_{n->oo} f(n)/log_2(n)^2 = delta exists, and exp(-gamma)/40 <= delta <= 2*exp(-gamma).
Sum_{k=1..n} f(k) = c * exp(2*gamma) * log_3(n)^2 * n + O(n * log_3(n)^(3/2)), where c = Product_{p prime} (1 - 3/(p*(p + 1)) + 1/(p^2*(p + 1)) + ((p-1)^3/p^2)*Sum_{k>=3} 1/(p^k-1)) = 0.45782563109026414241... .

A370690 Denominator of sigma(phi(n))/phi(sigma(n)), where sigma is the sum of the divisors function and phi is the Euler totient function.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 1, 8, 1, 6, 2, 12, 3, 2, 8, 2, 6, 2, 8, 4, 4, 2, 2, 16, 5, 3, 16, 6, 1, 8, 2, 36, 8, 18, 4, 18, 18, 16, 2, 24, 2, 8, 5, 4, 2, 2, 2, 60, 3, 10, 8, 7, 9, 32, 4, 8, 32, 3, 8, 48, 5, 4, 48, 2, 6, 8, 2, 4, 8, 4, 1, 8, 12, 36, 2, 48, 4, 4, 4, 20, 11
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2024

Keywords

Comments

See A370689 for details.

Crossrefs

Cf. A000010, A000203, A033632, A062401, A062402, A065395, A066930 (positions of 1's), A073858, A289336, A289412, A370689 (numerators).

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]]/EulerPhi[DivisorSigma[1, n]], {n, 1, 100}] // Denominator
  • PARI
    a(n) = {my(f = factor(n)); denominator(sigma(eulerphi(f)) / eulerphi(sigma(f)));}

A291185 a(n) = the smallest number k such that sigma(k) / phi(k) >= n.

Original entry on oeis.org

1, 2, 2, 6, 6, 6, 12, 30, 30, 60, 120, 210, 420, 420, 840, 2520, 9240, 9240, 27720, 55440, 120120, 360360, 720720, 2162160, 6126120, 12252240, 36756720, 116396280, 232792560, 698377680, 2677114440, 5354228880, 26771144400, 155272637520, 465817912560
Offset: 1

Views

Author

Jaroslav Krizek, Aug 19 2017

Keywords

Comments

a(n) = the smallest number k such that A000203(k) / A000010(k) = A289336(k) / A289412(k) >= n.

Examples

			For n = 4; a(4) = 6 because 6 is the smallest number with sigma(6) / phi(6) = 12 / 2 = 6 >= 2.
		

Crossrefs

Programs

  • Magma
    a:=1; S:=[a]; for n in [2..24] do k:=0; flag:= true; while flag do k+:=1; if &+[d: d in Divisors(k)] / EulerPhi(k) ge n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
  • Maple
    b:= 0:
    for n from 1 to 3*10^6 do
    r:= floor(numtheory:-sigma(n)/numtheory:-phi(n));
    if r > b then
        for i from b+1 to r do A[i]:= n od:
        b:= r;
    fi
    od:
    seq(A[i],i=1..b); # Robert Israel, Aug 21 2017
  • Mathematica
    With[{s = KeySort@ PositionIndex@ Array[Floor[DivisorSigma[1, #]/EulerPhi@ #] &, 10^6]}, Function[t, Reverse@ FoldList[Min, #] &@ Reverse@ TakeWhile[#, # > 0 &] &@ ReplacePart[t, Map[# -> Lookup[s, #][[1]] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]] (* Michael De Vlieger, Aug 19 2017 *) (* or *)
    r = 1; Reap[ Do[z = DivisorSigma[1, n]/EulerPhi@ n; While[z >= r, r++; Sow@ n], {n, 10^6}]][[2, 1]] (* Giovanni Resta, Aug 21 2017 *)

Extensions

a(25)-a(35) from Giovanni Resta, Aug 21 2017
Showing 1-5 of 5 results.