cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A289413 Primes p such that (p,p+4) is a pair of cousin primes and p == 3 (mod 10).

Original entry on oeis.org

3, 13, 43, 103, 163, 193, 223, 313, 463, 613, 643, 673, 823, 853, 883, 1093, 1213, 1303, 1423, 1483, 1663, 1693, 1783, 1873, 1993, 2083, 2203, 2293, 2473, 2683, 2833, 2953, 3163, 3253, 3343, 3463, 3613, 3673, 3793, 3943, 4003, 4153, 4513, 4783, 4813, 4933, 5233, 5413, 5503, 5653, 5923
Offset: 1

Views

Author

Muniru A Asiru, Jul 06 2017

Keywords

Comments

For pairs of cousin primes (p,p+4) such that p == 9 (mod 10) and pairs of cousin primes (p,p+4) such that p == 7 (mod 10), see A074822 and A289353, respectively. A074822, A289353 and this sequence give all the lesser members p of pairs of cousin primes.

Examples

			For p = 193, the pair of cousin primes is (193, 197) and 193 == 3 (mod 10).
Although, the primes 3 and 7 are not consecutive primes, p = 3 yields the pair of cousin primes (3, 7) and 3 == 3 (mod 10).
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..10000],IsPrime);;
    P1:=Concatenation([3],List(Filtered(Filtered(List([1..Length(P)-1],n->[P[n],P[n+1]]),i->i[2]-i[1]=4),j->j[1] mod 10 = 3),k->k[1]));
    
  • Maple
    A289413:={}:  for i from 1 to 1500 do if isprime(ithprime(i) + 4) and ithprime(i) mod 10 = 3 then A289413:={op(A289413), ithprime(i)}: fi: od: A289413;
    # Alternative:
    select(t -> isprime(t) and isprime(t+4), [seq(i,i=3..10000, 10)]); # Robert Israel, Aug 02 2017
  • Mathematica
    Select[Prime[Range[800]],Mod[#,10]==3&&PrimeQ[#+4]&] (* Harvey P. Dale, Aug 22 2019 *)
  • PARI
    isok(p) = isprime(p) && isprime(p+4) && (p%10==3); \\ Michel Marcus, Jul 19 2017
    
  • PARI
    list(lim)=my(v=List([3]),p=13); forprime(q=17,lim+4, if(q-p==4 && p%10==3, listput(v,p)); p=q); Vec(v) \\ Charles R Greathouse IV, Aug 03 2017
Showing 1-1 of 1 results.