A289415 a(n) = ((11-sqrt(11))^n + (11+sqrt(11))^n) / 2.
1, 11, 132, 1694, 22748, 314116, 4408272, 62429224, 888533008, 12680511536, 181232622912, 2592261435104, 37094163051968, 530922829281856, 7599944308484352, 108797263565651584, 1557545924511056128, 22298311347021560576, 319232797938258158592
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..850
- Index entries for linear recurrences with constant coefficients, signature (22,-110).
Programs
-
Maple
a:= n-> (<<0|1>, <-110|22>>^n. <<1,11>>)[1,1]: seq(a(n), n=0..25); # Alois P. Heinz, Jul 06 2017
-
PARI
Vec((1 - 11*x) / (1 - 22*x + 110*x^2) + O(x^25))
Formula
G.f.: (1 - 11*x) / (1 - 22*x + 110*x^2).
a(n) = 22*a(n-1) - 110*a(n-2) for n>1.