cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A289415 a(n) = ((11-sqrt(11))^n + (11+sqrt(11))^n) / 2.

Original entry on oeis.org

1, 11, 132, 1694, 22748, 314116, 4408272, 62429224, 888533008, 12680511536, 181232622912, 2592261435104, 37094163051968, 530922829281856, 7599944308484352, 108797263565651584, 1557545924511056128, 22298311347021560576, 319232797938258158592
Offset: 0

Views

Author

Colin Barker, Jul 06 2017

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1>, <-110|22>>^n. <<1,11>>)[1,1]:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 06 2017
  • PARI
    Vec((1 - 11*x) / (1 - 22*x + 110*x^2) + O(x^25))

Formula

G.f.: (1 - 11*x) / (1 - 22*x + 110*x^2).
a(n) = 22*a(n-1) - 110*a(n-2) for n>1.

A361432 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 20, 8, 0, 1, 5, 20, 54, 68, 16, 0, 1, 6, 30, 112, 252, 232, 32, 0, 1, 7, 42, 200, 656, 1188, 792, 64, 0, 1, 8, 56, 324, 1400, 3904, 5616, 2704, 128, 0, 1, 9, 72, 490, 2628, 10000, 23360, 26568, 9232, 256, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1, ...
  0,  1,   2,    3,    4,     5, ...
  0,  2,   6,   12,   20,    30, ...
  0,  4,  20,   54,  112,   200, ...
  0,  8,  68,  252,  656,  1400, ...
  0, 16, 232, 1188, 3904, 10000, ...
		

Crossrefs

Main diagonal gives A084062.

Programs

  • PARI
    T(n,k) = sum(j=0, n\2, k^(n-j)*binomial(n, 2*j));
    
  • PARI
    T(n, k) = round(((k+sqrt(k))^n+(k-sqrt(k))^n))/2;

Formula

T(0,k) = 1, T(1,k) = k; T(n,k) = 2 * k * T(n-1,k) - (k-1) * k * T(n-2,k).
T(n,k) = ((k + sqrt(k))^n + (k - sqrt(k))^n)/2.
G.f. of column k: (1 - k * x)/(1 - 2 * k * x + (k-1) * k * x^2).
E.g.f. of column k: exp(k * x) * cosh(sqrt(k) * x).

A361293 a(n) = 20 * a(n-1) - 90 * a(n-2) for n>1, with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 20, 310, 4400, 60100, 806000, 10711000, 141680000, 1869610000, 24641000000, 324555100000, 4273412000000, 56258281000000, 740558540000000, 9747925510000000, 128308241600000000, 1688851536100000000, 22229288978000000000, 292589141311000000000
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2023

Keywords

Crossrefs

Column k=10 of A361290.
Cf. A289414.

Programs

  • Mathematica
    LinearRecurrence[{20,-90},{0,1},20] (* Harvey P. Dale, Dec 16 2023 *)
  • PARI
    a(n) = polcoef(lift(Mod('x, ('x-10)^2-10)^n), 1);
    
  • PARI
    my(N=20, x='x+O('x^N)); concat (0,  Vec(x/(1-20*x+90*x^2)))
    
  • PARI
    my(N=20, x='x+O('x^N)); concat (0, apply(round, Vec(serlaplace(exp(10*x)*sinh(sqrt(10)*x)/sqrt(10)))))

Formula

a(n) = ( (10 + sqrt(10))^n - (10 - sqrt(10))^n )/(2 * sqrt(10)).
a(n) = Sum_{k=0..floor((n-1)/2)} 10^(n-1-k) * binomial(n,2*k+1).
G.f.: x/(1 - 20 * x + 90 * x^2).
E.g.f.: exp(10 * x) * sinh(sqrt(10) * x) / sqrt(10).
Showing 1-3 of 3 results.