cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289501 Number of enriched p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 4, 12, 32, 112, 352, 1296, 4448, 16640, 59968, 231168, 856960, 3334400, 12679424, 49991424, 192890880, 767229952, 2998427648, 12015527936, 47438950400, 191117033472, 760625733632, 3082675150848, 12346305839104, 50223511928832, 202359539335168
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2017

Keywords

Comments

An enriched p-tree of weight n is either (case 1) the number n itself, or (case 2) a sequence of two or more enriched p-trees, having a weakly decreasing sequence of weights summing to n.

Examples

			The a(4) = 12 enriched p-trees are:
  4,
  (31), ((21)1), (((11)1)1), ((111)1),
  (22), (2(11)), ((11)2), ((11)(11)),
  (211), ((11)11),
  (1111).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
        end:
    a:= n-> `if`(n=0, 1, 1+b(n, n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 07 2017
  • Mathematica
    a[n_]:=a[n]=1+Sum[Times@@a/@y,{y,Rest[IntegerPartitions[n]]}];
    Array[a,20]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1,
         If[i<1, 0, b[n, i-1] + a[i] b[n-i, Min[n-i, i]]]];
    a[n_] := If[n == 0, 1, 1 + b[n, n-1]];
    a /@ Range[0, 30] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

Formula

O.g.f.: (1/(1-x) + Product_{i>0} 1/(1-a(i)*x^i))/2.