cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289545 Number of flags in an n-dimensional vector space over GF(2).

Original entry on oeis.org

1, 1, 4, 36, 696, 27808, 2257888, 369572160, 121459776768, 79991977040128, 105466641591287296, 278244130564826548224, 1468496684404408240109568, 15502543140842029367582248960, 327332729703063815298568073396224, 13823536566775628445052117519260598272
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2017

Keywords

Crossrefs

Cf. A381299.
Column k=2 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(2^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..16);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    nn = 15; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,
       nn}] CoefficientList[Series[ 1/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z]

Formula

a(n) = Sum A005329(n)/( A005329(n_1)*A005329(n_2)*...*A005329(n_k) ) where the sum is over all compositions of n = n_1 + n_2 + ... + n_k.
G.f. a(n)/A005329(n) is the coefficient of x^n in 1/(2 - eq(x)) where eq(x) is the 2-exponential function.
a(n) = Sum_{k=0..binomial(n,2)} 2^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025