A289567 Coefficients in expansion of 1/E_6^(1/2).
1, 252, 103572, 46355904, 21754545876, 10493652271032, 5153897870227008, 2563741466120209536, 1287429765611338091988, 651251466581383330576956, 331360676706818772917367912, 169399388595923901462013678656
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..367
Crossrefs
1/E_k^(1/2): A289565 (k=2), A289566 (k=4), this sequence (k=6), A001943 (k=8), A289568 (k=10), A289569 (k=14).
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[(1 - 504*Sum[DivisorSigma[5,k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(-A288851(n)/2).
a(n) ~ c * exp(2*Pi*n) / sqrt(n), where c = 2^(5/2) * Gamma(3/4)^8 / (3*Pi^(5/2)) = 0.5480868931611627439175185425300450785609564636925943866686455998197... - Vaclav Kotesovec, Jul 09 2017, updated Mar 03 2018