A289029
Exponents a(1), a(2), ... such that E_14, 1 - 24*q - 196632*q^2 + ... (A058550) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .
Original entry on oeis.org
24, 196908, 42987544, 21974456220, 8544538312728, 3980088408377644, 1793770730037338136, 847156322106368439324, 401870774532436947447832, 193962999708079363021283628, 94363580764388112933729226776, 46332621615483591171320408201116
Offset: 1
A289636
Coefficients in expansion of -q*E'_4/E_4 where E_4 is the Eisenstein Series (A004009).
Original entry on oeis.org
-240, 53280, -12288960, 2835808320, -654403831200, 151013228757120, -34848505552897920, 8041801037378486400, -1855762905734676483120, 428244362959801779806400, -98823634118413525094402880, 22804995243537595828606337280
Offset: 1
a(1) = 1 * A110163(1) = -240,
a(2) = 1 * A110163(1) + 2 * A110163(2) = 53280,
a(3) = 1 * A110163(1) + 3 * A110163(3) = -12288960.
-
nmax = 20; Rest[CoefficientList[Series[-240*x*Sum[k*DivisorSigma[3, k]*x^(k-1), {k, 1, nmax}]/(1 + 240*Sum[DivisorSigma[3, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[-D[Ei[4], x]/Ei[4] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
A289638
Coefficients in expansion of -q*E'_8/E_8 where E_8 is the Eisenstein Series (A008410).
Original entry on oeis.org
-480, 106560, -24577920, 5671616640, -1308807662400, 302026457514240, -69697011105795840, 16083602074756972800, -3711525811469352966240, 856488725919603559612800, -197647268236827050188805760, 45609990487075191657212674560
Offset: 1
-
nmax = 20; Rest[CoefficientList[Series[-480*x*Sum[k*DivisorSigma[7, k]*x^(k-1), {k, 1, nmax}]/(1 + 480*Sum[DivisorSigma[7, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
A289639
Coefficients in expansion of -q*E'_10/E_10 where E_10 is the Eisenstein Series (A013974).
Original entry on oeis.org
264, 340560, 141251616, 85062410400, 43377095394864, 23729517350865216, 12591243615814264896, 6769208775901467246912, 3618692733697667332476264, 1939201752717876551124987360, 1038098212042387655796115897440
Offset: 1
-
nmax = 20; Rest[CoefficientList[Series[264*x*Sum[k*DivisorSigma[9, k]*x^(k-1), {k, 1, nmax}]/(1 - 264*Sum[DivisorSigma[9, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
A289635
Coefficients in expansion of -q*E'_2/E_2 where E_2 is the Eisenstein Series (A006352).
Original entry on oeis.org
24, 720, 19296, 517920, 13893264, 372707136, 9998360256, 268219317312, 7195339794744, 193024557070560, 5178140391612960, 138910500937231488, 3726458885094926160, 99967214347459657344, 2681753442755678231616
Offset: 1
a(1) = - A006352(1)*1 = 24,
a(2) = -(A006352(1)*a(1)) - A006352(2)*2 = 720,
a(3) = -(A006352(1)*a(2) + A006352(2)*a(1)) - A006352(3)*3 = 19296,
a(4) = -(A006352(1)*a(3) + A006352(2)*a(2) + A006352(3)*a(1)) - A006352(4)*4 = 517920.
-
nmax = 20; Rest[CoefficientList[Series[24*x*Sum[k*DivisorSigma[1, k]*x^(k-1), {k, 1, nmax}]/(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
A289637
Coefficients in expansion of -q*E'_6/E_6 where E_6 is the Eisenstein Series (A013973).
Original entry on oeis.org
504, 287280, 153540576, 82226602080, 44031499226064, 23578504122108096, 12626092121367162816, 6761166974864088760512, 3620548496603402008959384, 1938773508354916749345180960, 1038197035676506069321210300320
Offset: 1
-
nmax = 20; Rest[CoefficientList[Series[504*x*Sum[k*DivisorSigma[5, k]*x^(k-1), {k, 1, nmax}]/(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)
A289746
Coefficients in expansion of -q*E'_14 where E_14 is the Eisenstein Series (A058550).
Original entry on oeis.org
24, 393264, 114791328, 6443237472, 146484375120, 1880970700608, 16277353748544, 105566002741440, 549043363293048, 2400292970716320, 9113996005998048, 30817824417926784, 94497033256783248, 266720718523641984, 700630664636456640
Offset: 1
Showing 1-7 of 7 results.
Comments