A289776 Least k such that the sum of the first n divisors of k is a prime number.
2, 4, 30, 16, 84, 36, 60, 144, 144, 144, 144, 210, 324, 360, 630, 756, 756, 576, 660, 840, 840, 2040, 900, 900, 2304, 1980, 1980, 1980, 4320, 5184, 3300, 4620, 5460, 7056, 3960, 4680, 2520, 3600, 3600, 3600, 10080, 8100, 3600, 6300, 9900, 7920, 11088, 14400
Offset: 2
Keywords
Examples
a(4)=30 because the sum of the first 4 divisors of 30 is 1 + 2 + 3 + 5 = 11, which is prime, and there is no integer below 30 with this property.
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..1000
Programs
-
Maple
with(numtheory):nn:=10^6: for n from 2 to 50 do: ii:=0: for k from 2 to nn while(ii=0) do: x:=divisors(k):n0:=nops(x): for l from 1 to n0 while(ii=0) do: p:=sum('x[i]', 'i'=1..l): if type(p,prime)=true and l=n then ii:=1:printf (`%d %d \n`,n,k): else fi: od: od: od:
-
Mathematica
Table[k = 1; While[Nand[Length@ # >= n, PrimeQ@ Total@ Take[PadRight[#, n], n]] &@ Divisors@ k, k++]; k, {n, 2, 49}] (* Michael De Vlieger, Jul 12 2017 *)
-
PARI
a(n) = k=1; while((d=divisors(k)) && ((#d
Michel Marcus, Jul 12 2017 -
Python
from sympy import divisors, isprime def A289776(n): i = 1 while len(divisors(i)) < n or not isprime(sum(divisors(i)[:n])): i += 1 return i # Chai Wah Wu, Aug 05 2017
Comments