cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289776 Least k such that the sum of the first n divisors of k is a prime number.

Original entry on oeis.org

2, 4, 30, 16, 84, 36, 60, 144, 144, 144, 144, 210, 324, 360, 630, 756, 756, 576, 660, 840, 840, 2040, 900, 900, 2304, 1980, 1980, 1980, 4320, 5184, 3300, 4620, 5460, 7056, 3960, 4680, 2520, 3600, 3600, 3600, 10080, 8100, 3600, 6300, 9900, 7920, 11088, 14400
Offset: 2

Views

Author

Michel Lagneau, Jul 12 2017

Keywords

Comments

The corresponding primes are 3, 7, 11, 31, 23, 37, 43, 61, 79, 103, 139, 191, 523, 167, 263, 347, 431, 787, 641, ...
The squares in the sequence are 4, 16, 36, 144, 324, 576, 900, 2304, 3600, 5184, 7056, 8100, 14400, ...

Examples

			a(4)=30 because the sum of the first 4 divisors of 30 is 1 + 2 + 3 + 5 = 11, which is prime, and there is no integer below 30 with this property.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^6:
    for n from 2 to 50 do:
    ii:=0:
       for k from 2 to nn while(ii=0) do:
         x:=divisors(k):n0:=nops(x):
           for l from 1 to n0 while(ii=0) do:
            p:=sum('x[i]', 'i'=1..l):
            if type(p,prime)=true and l=n
             then
             ii:=1:printf (`%d %d \n`,n,k):
             else fi:
            od:
          od:
      od:
  • Mathematica
    Table[k = 1; While[Nand[Length@ # >= n, PrimeQ@ Total@ Take[PadRight[#, n], n]] &@ Divisors@ k, k++]; k, {n, 2, 49}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    a(n) = k=1; while((d=divisors(k)) && ((#dMichel Marcus, Jul 12 2017
    
  • Python
    from sympy import divisors, isprime
    def A289776(n):
        i = 1
        while len(divisors(i)) < n or not isprime(sum(divisors(i)[:n])):
            i += 1
        return i # Chai Wah Wu, Aug 05 2017