A289829 Perfect squares of the form prime(k+1)^2 - prime(k)^2 + 1 where prime(k) is the k-th prime number.
25, 49, 121, 169, 289, 361, 841, 961, 1681, 1849, 2401, 2809, 3721, 5929, 6889, 7921, 8281, 10201, 11449, 11881, 14161, 14641, 17689, 24649, 26569, 32041, 38809, 41209, 43681, 44521, 61009, 63001, 69169, 76729, 80089, 85849, 89401, 94249, 96721, 97969, 108241
Offset: 1
Keywords
Examples
7^2 - 5^2 + 1 = 5^2, 17^2 - 13^2 + 1 = 11^2, 47^2 - 43^2 + 1 = 19^2, etc.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
TakeWhile[#, # < 110000 &] &@ Union@ Select[Array[Prime[# + 1]^2 - Prime[#]^2 + 1 &, 10^4], IntegerQ@ Sqrt@ # &] (* Michael De Vlieger, Jul 13 2017 *) Take[Select[#[[2]]-#[[1]]+1&/@Partition[Prime[Range[3000]]^2,2,1],IntegerQ[Sqrt[#]]&]//Union,50] (* Harvey P. Dale, Jan 19 2025 *)
-
PARI
is(n) = if(!issquare(n), return(0), my(p=2); while(1, if(n==nextprime(p+1)^2-p^2+1, return(1)); p=nextprime(p+1); if(p > n, return(0)))) \\ Felix Fröhlich, Jul 15 2017
-
Python
from _future_ import division from sympy import divisors, isprime, prevprime, nextprime A289829_list = [] for n in range(10**4): m = n**2-1 for d in divisors(m): if d*d >= m: break r = m//d if not r % 2: r = r//2 if not isprime(r): p, q = prevprime(r), nextprime(r) if m == (q-p)*(q+p): A289829_list.append(n**2) break # Chai Wah Wu, Jul 15 2017
Extensions
More terms from Alois P. Heinz, Jul 13 2017