A289982 Lesser member p of twin primes in A054723 (Prime exponents of composite Mersenne numbers).
41, 71, 101, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1289, 1301, 1319, 1427, 1451, 1481, 1487, 1607, 1619, 1667, 1697, 1721, 1787, 1871, 1877
Offset: 1
Keywords
Examples
p=41 is a member because 41 is a lesser of twin prime and 2^41 - 1 = 13367*164511353 is composite. Similarly, p=227 is a member because 227 is a lesser of twin prime and 2^227 - 1 is composite.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
GAP
P1:=Difference(Filtered([1..100000],IsPrime),[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701,23209, 44497, 86243]);; P2:=List([1..Length(P1)-1],i->[P1[i],P1[i+1]]);; P3:=List(Positions(List(P2,i->i[2]-i[1]),2),i->P2[i][1]);
-
Mathematica
Function[s, Flatten@ Map[s[[#, 1]] &, Position[Most@ s, d_ /; Quiet@ Differences@ d == {2}, {1}]]]@ Partition[#, 2, 1] &@ Select[Prime@ Range@ 360, ! PrimeQ[2^# - 1] &] (* Michael De Vlieger, Jul 17 2017 *) Select[Partition[Module[{nn=20,mp},mp=MersennePrimeExponent[Range[nn]];Complement[Prime[Range[PrimePi[Last[mp]]]],mp]],2,1],#[[2]]-#[[1]]==2 && AllTrue[#,PrimeQ]&][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 10 2019 *)
-
PARI
isok(n) = isprime(n) && isprime(n+2) && !isprime(2^n-1) && !isprime(2^(n+2)-1); \\ Michel Marcus, Jul 19 2017
Comments