cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290012 a(n) is the smallest prime number p satisfying p^2 >= Sum_{1 <= k <= n} prime(k)^2.

Original entry on oeis.org

2, 5, 7, 11, 17, 23, 29, 37, 41, 53, 59, 71, 83, 97, 103, 127, 131, 149, 163, 179, 191, 211, 223, 239, 257, 277, 307, 317, 337, 353, 373, 397, 419, 443, 467, 491, 521, 541, 569, 593, 617, 643, 673, 701, 727, 757, 787, 821, 853, 877, 907, 937
Offset: 1

Views

Author

Dimitris Valianatos, Jul 17 2017

Keywords

Comments

Conjecture: The only twin prime pair in the sequence is (5, 7).

Examples

			The prime number 17 is the fifth term because the sum of squares of the first 5 prime numbers is 2^2 + 3^2 + 5^2 + 7^2 + 11^2 = 208 < 17^2 = 289.
		

Crossrefs

Cf. A076873.

Programs

  • Mathematica
    Table[Function[k, p = 2; While[p^2 < k, p = NextPrime@ p]; p][Total[Prime[Range@ n]^2]], {n, 52}] (* Michael De Vlieger, Jul 18 2017 *)
    spn[n_]:=Module[{k=Ceiling[Sqrt[n]]},If[PrimeQ[k],k,NextPrime[k]]]; spn/@ Accumulate[Prime[Range[60]]^2] (* Harvey P. Dale, May 20 2021 *)
  • PARI
    {
    sp=0;p=0;
    forprime(n=2,200,
             sp+=n^2;
             while(p^2
    				
  • PARI
    a(n) = my(s=sum(k=1, n, prime(k)^2)); forprime(p=1, , if(p^2 >= s, return(p))) \\ Felix Fröhlich, Jul 18 2017

Extensions

Definition clarified by Felix Fröhlich, Jul 18 2017