cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290061 a(n) = (1/24)*(n + 3)*(3*n^3 + 5*n^2 - 6*n + 16).

Original entry on oeis.org

3, 10, 31, 77, 162, 303, 520, 836, 1277, 1872, 2653, 3655, 4916, 6477, 8382, 10678, 13415, 16646, 20427, 24817, 29878, 35675, 42276, 49752, 58177, 67628, 78185, 89931, 102952, 117337, 133178, 150570, 169611, 190402, 213047, 237653, 264330, 293191, 324352, 357932
Offset: 1

Views

Author

Gregory Gerard Wojnar, Jul 19 2017

Keywords

Crossrefs

Column 3 of A290053.

Programs

  • Mathematica
    Table[(1/24)(n+3)(3n^3+5n^2-6n+16),{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{3,10,31,77,162},40] (* Harvey P. Dale, Oct 29 2018 *)
  • PARI
    Vec(x*(3 - 5*x + 11*x^2 - 8*x^3 + 2*x^4) / (1 - x)^5 + O(x^50)) \\ Colin Barker, Jul 20 2017
    
  • PARI
    vector(50,n,(n+3)*(3*n^3+5*n^2-6*n+16)/24) \\ Derek Orr, Jul 24 2017

Formula

From Colin Barker, Jul 20 2017: (Start)
G.f.: x*(3 - 5*x + 11*x^2 - 8*x^3 + 2*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
(End)