cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290071 a(n) = (1/48)*n*(n+5)^2*(1*n^3 + 7*n^2 + 16*n + 28).

Original entry on oeis.org

0, 39, 196, 664, 1809, 4250, 8954, 17346, 31434, 53949, 88500, 139744, 213571, 317304, 459914, 652250, 907284, 1240371, 1669524, 2215704, 2903125, 3759574, 4816746, 6110594, 7681694, 9575625, 11843364, 14541696, 17733639, 21488884, 25884250, 31004154, 36941096
Offset: 0

Views

Author

Gregory Gerard Wojnar, Jul 19 2017

Keywords

Crossrefs

This is the negation of column 4 in triangle A290053.

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,39,196,664,1809,4250,8954},40] (* Harvey P. Dale, Nov 15 2022 *)
  • PARI
    concat(0, Vec(x*(39 - 77*x + 111*x^2 - 88*x^3 + 36*x^4 - 6*x^5) / (1 - x)^7 + O(x^50))) \\ Colin Barker, Jul 20 2017
    
  • PARI
    vector(50,n,n*(n+5)^2*(n^3+7*n^2+16*n+28)/48) \\ Derek Orr, Jul 24 2017

Formula

From Colin Barker, Jul 20 2017: (Start)
G.f.: x*(39 - 77*x + 111*x^2 - 88*x^3 + 36*x^4 - 6*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6.
(End)